
OVR Stylus: Designing Pen-Based 3D Input Devices for Virtual Reality
Bret Jackson*

Macalester College
Saint Paul, Minnesota, USA

Figure 1: The OVR Stylus is a pen-shaped 3D input device for VR/AR environments. Wireless communication transmits button clicks
and values from a sliding touch pad. A haptic motor provides vibrotactile feedback.

ABSTRACT

We present the OVR Stylus, an open-source, tangible, haptic prop
for 3D input in virtual environments. The design offers an alterna-
tive to commercial 3D pen input devices, and represents a second-
generation hardware design based on six years of use with a previous
prototype. With a touch pad, two input buttons, LRA-based vibrotac-
tile haptic feedback, and Bluetooth communication, the 3D-printed
prop’s light-weight design (35g) enables creative and precise interac-
tion. Through a discussion of design considerations and motivations,
components, manufacturing processes, software, and lessons learned
we enable others to create their own OVR Stylus or develop similar
designs.

Index Terms: Human-centered computing—Human com-
puter interaction—Interaction devices—Pointing devices; Human-
centered computing—Human computer interaction—Interaction
paradigms—Virtual reality

1 INTRODUCTION

In virtual reality (VR) and augmented reality (AR) users typically
interact with a hand-held device (e.g. HTC Vive Controllers) to
perform common operations like selection, manipulation, and system
control. Driven primarily by the gaming industry, these devices are
commonly held using a power grip, similar to how a user might hold
a handle or lift a coffee mug. For many games, this type of grip and
controller makes sense. It closely mimics how someone might hold
a tool, and predominantly uses the force of the hand rather than the
strength of individual fingers.

However, holding a controller using a power grip limits preci-
sion [9]. Indeed, recent work by Pham and Stuerzlinger [28] found
that in a Fitts’ Law task, a pen-shaped prop using a precision grip
outperformed a standard VR controller in pointing speed, mouse con-
trol, errors, and throughput; it reached comparable input to a mouse.
It is no surprise that with increasing use of VR/AR technologies
for consumer applications beyond gaming, commercial companies

*e-mail: bjackson@macalester.edu

are developing pen-shaped 3D input devices. Examples include the
Logitech VR Ink [22], Massless Pen [24], and Holo-Stylus [16].

In this paper, we present the OVR Stylus, a pen-shaped, tangible
prop for 3D input. The stylus features two buttons and a touch pad
slider for input that communicate wirelessly with a host computer.
A linear resonant actuator (LRA) motor enables vibrotactile haptic
feedback. The design presented here is a second-generation proto-
type, refining an initial model that has been used in our lab with VR
applications for the last six years.

Although pen-shaped 3D input devices are not in themselves
novel, to our knowledge, no other fully-realized, open source im-
plementation exists using modern hardware. Our primary contri-
bution is the hardware and software implementation, which other
researchers can use to produce their own OVR Stylus. Furthermore,
the hardware design can serve as a building block for modifications
to create other formats of novel 3D input devices. In addition, we
provide design criteria, discussion, and lessons learned to guide this
future work.

2 RELATED WORK

Many stylus input devices have been created, but they are used
predominantly for surface computing or touch displays (e.g Wacom
Pen [15], Elastylus [23], Haptylus [27], ImpAct [35]). Here, we
limit our discussion to those relevant to mid-air 3D input for use
with VR or AR displays.

Notable examples include work by Teather and Stuerzlinger [33]
and Pham and Stuerzlinger [28] that uses an un-powered pen-like
device fitted with optical tracking markers to explore 3D pointing.
Similarly, Brown et al. [8] use a chopstick tracked with a Leap
Motion [34] for pointing. SymbiosisSketch [3] uses a traditional
writing pen fitted with motion capture markers to support mid-air
sketching. Each of these examples demonstrates the utility of pen-
shaped input devices for VR, but their focus is on studying 3D
pointing performance or application design rather than creating a
functional input device for everyday use. With the exception of
Pham and Stuerzlinger [28], which includes a short description
of the VR/AR pen design space, these references provide further
motivation for the need for pen-shaped VR input devices, but little
in the way of concrete designs.

Most existing functional 3D stylus designs are tethered with a
cord to a host computer to facilitate communication of button presses



Figure 2: OVR Stylus circuit schematic. The hardware contains a battery charging circuit, variable selection of the power source, and a voltage
regulator to output 3.3v power. The Redbear MB-N2 module houses a Nordic nRF52832 BLE chip and antenna.

and provide power. Examples include the Fasttrak Polyhemus Dig-
itizer [11], and the zSpace stylus [36]. The Tactylus stylus [21]
and the stylus presented by Kamuro et al. [19] are similar, but add
additional haptic feedback to the devices. However, the tether limits
mobility for use in room-scale displays (e.g. a VR CAVE), and can
cause increased fatigue due to balance issues from the cord [21].
This prior work influenced the design decision to make the OVR
Stylus fully wireless.

The SenStylus [12] is perhaps the most similar to the OVR Sty-
lus design and holds comparable motivations with our prior work
in developing pen-based input devices for immersive 3D model-
ing [17] and other VR applications. The SenStylus consists of a
stylus containing buttons and analog input linked to a wireless Log-
itech Rumblepad game controller worn on the user’s arm. In contrast
to this 15 year old design, the OVR Stylus provides a modern imple-
mentation. It does not require the cumbersome wrist-worn device
and is both lighter and thinner.

3 DESIGN CONSIDERATIONS

Our design considerations were informed by six years of use with
a first generation stylus prototype used for input in a VR CAVE
with applications for scientific visualization and 3D modeling. This
experience instructed our design goals for both the physical charac-
teristics of the device and functional characteristics.

One of the main advantages of the first prototype is its light
weight. We have used it in multiple 2–5 hour VR sessions with
relatively little discomfort compared to using traditional and heavier
wand input devices, like the HTC VIVE Controllers. This is particu-
larly important for 3D input devices that are used for large mid-air
sweeping input to avoid the common gorilla arm effect [7]. Manag-
ing weight was a key requirement for the new design. Prior work
has also found that the weight distribution of a stylus can impact
fatigue with use [28]. As a result, the weight distribution in the OVR
Stylus is centered on the user’s hand as much as possible. The total
assembled weight is about 35 grams.

Six years ago, our first prototype was also quite thick, with a
diameter of 25mm. At the time, the smallest off-the-shelf micro-
controller development boards available were 18mm wide. Although
the first prototype was cylindrical in the shape of a pen, some users
would initially hold it like a baton with a power grip. A primary goal
of the redesign is to keep the OVR Stylus as thin as possible. This

more closely mimics the shape of a pen or marker and avoids ambi-
guity in how the device should primarily be held using a precision
grip (while still allowing for a power grip if needed).

The wireless connectivity is a primary functional characteristic.
Without a tether providing power, this design decision necessitates
that the electronic components have low consumption to avoid the
weight and size impact of heavier batteries. Along these lines,
the first prototype required the user to disassemble the stylus to
remove the battery for recharging. To improve the utility of the OVR
Stylus, the current design needs to include a battery charging circuit,
allowing the device to be recharged through a USB port without
disassembly.

For 3D tracking, we considered adding an inertia measurement
unit (IMU) to calculate orientation. However, this approach would
require an external way to measure the absolute spatial position of
the stylus. Instead, the design integrates optical tracking markers
for use with common motion capture systems (e.g. NaturalPoint
OptiTrack).

The last functional consideration is to limit the number of buttons
on the device. Although it is a common practice in user interface
design to map each new function to a separate button; this approach
does not scale. Instead, we follow the recommendation of Jackson et
al. [18] to minimize the number of buttons and instead use context-
based interaction to interpret button input. Our experience with the
first prototype, which also included only two buttons, has been that
this characteristic improves learnability of the interface and makes it
more intuitive to use.

4 OVR STYLUS

The OVR Stylus is made from the components shown in Figure 3.
A custom-designed printed circuit board (PCB) houses the elec-
tronics and micro-controller with a Bluetooth Low-Energy (BLE)
module and antenna. For user input, there are two buttons and a
touch pad created by a sliding soft membrane potentiometer that
gives analog values. A LRA haptic motor and controller board is
mounted at the front of the stylus for vibrotactile feedback. The
3D printed case allows interchangeable tips and optical tracking
configurations. In the sections below, we describe the hardware and
software implementations in more detail.



Figure 3: Top: The custom PCB, Lithium-polymer battery, LRA haptic
motor and controller components fit inside a 3D printed case with
interchangeable ends. Bottom: The custom PCB enables the thin
form-factor.

4.1 Hardware

To meet the minimum thickness requirement necessitated develop-
ing a custom printed circuit board. This design process includes
choosing components and creating a schematic for the electronic
circuits. This step is followed by laying out the placement of the
components and connections to create the board design, and finally
submitting the design for manufacture and assembly.

The circuit schematic, shown in Figure 2, contains several primary
components (summarized in Table 1). The primary component
choice is the micro-controller and BLE module. At the start of this
project the smallest BLE system-on-a-chip (SoC) was the Redbear
MB-N2 BLE module [29] that combines a Nordic nRF52832 BLE
chip [30] and on-board antenna. Its 10mm width sets the standard
for the rest of the PCB layout.

To support on-board battery charging, a MCP73831 Li-Polymer
charging manager chip [25] is used. This low-cost chip manages
preconditioning and charging rate. A 110mAh Li-Polymer battery is
used for its small size and high energy density.

Two Schottky diodes (D2 and D3 in Figure 2) are blocking diodes
to broker power. When the USB port is plugged in, its higher voltage
charges the battery through the MCP73831 chip and also powers the
stylus. When it is not present the power runs through D3 to power
the stylus. An AP2112k linear voltage regulator [10] maintains a
constant 3.3v required by the MB-N2 module. An external 32kHZ
crystal and DC/DC converter circuit lowers the power usage of the
nRF52832 chip.

The PCB was designed using Autodesk Eagle [4]. This layout
software is fairly easy to learn and use (the author has no prior
PCB design experience). The circuit schematic is created first by
importing the components and creating the electrical connections.
This is followed by the PCB design where the user lays out the
primary modules and routes the wires between them. The final PCB
design is shown in Figure 3.

Two surface-mount momentary push-button switches are mounted
near the front of the stylus to serve as input. The switches require
160gf to activate, giving a tactile feel of a click, while not requiring
so much force that the user accidentally re-positions the stylus in
space.

In addition to the buttons, the stylus integrates a soft membrane
potentiometer (SoftPot). Sliding a finger along the sensor membrane
produces variable resistance which can be read using an analog
input on the micro-controller. VR application developers can use
this input to adjust sliders or other scaled input. Additionally, its
output could be discretized to produce additional input buttons by
pressing different locations along the slider.

To support haptic effects, the stylus integrates a Samsung 8mm
Linear Resonant Actuator (LRA) motor that is controlled by a

Table 1: Summary of primary hardware components.

Component Part Description

Micro-Controller & BLE RedBear Labs MB-N2 nRF52832 Module. Other
nRF52832 alternatives: U-Blox NINA-B112, Seeed
MDBT42Q

Haptic Controller Fyber Labs LRA Haptic Flex Module - DRV2605L
LRA Motor Samsung LRA 8mm
SoftPot Potentiometer Spectra Symbol 50mm ThinPot
Battery Manager MCP73831T Li-Ion, Li-Pol Controller
Voltage Regulator AP2112 - 600mA CMOS LDO Regulator
Battery Sparkfun 110mAh Lithium Polymer

DRV2605L LRA driver module produced by Fyber Labs [14]. The
LRA uses magnetic fields to move a mass linearly in one dimen-
sion to produce a haptic feeling. The DRV2605L supports multiple
standard effects from different types of clicks to pulses and buzzes.
An LRA was chosen over the more commonly available Eccentric
Rotating Mass (ERM) motors, which rotate an off-center mass to
produce a force, because LRAs enable forces along the pointing di-
rection of the stylus rather than perpendicularly. This helps maintain
precision because the forces will predominantly move the stylus in
depth, which users already have less precision doing [33].

The case to hold the electronic components was modeled using
Autodesk Fusion 360 [5] and 3D printed using a Makerbot Replicator
printer. 3D printing allows for quick iterations on the design. The
plastic case supports the light-weight design goal while still being
robust for everyday use.

The top and bottom of the case are connected using interchange-
able threaded end-caps. The front end-cap narrows to a point for
precise input and to further replicate the use of a pen. The back
end-cap contains antlers to mount reflective markers used for 3D
tracking. Multiple marker configurations can be printed and inter-
changed if multiple styluses are used to enable bi-manual input or
multiple users. The LRA motor is glued to the front of the stylus
to facilitate transfer of the forces. The battery is mounted in the
middle to balance the weight. Additional 3D printing infill is added
to the front, minimally increasing the weight, while offsetting the
additional material used at the back of the stylus in the tracking
antlers to provide balance. The assembled stylus weighs 35g.

4.2 Software
The software running on the OVR Stylus is primarily organized
around the Bluetooth low energy stack. As part of the BLE protocol,
the Generic Access Profile (GAP) defines the roles that a BLE device
can have [6]. The two relevant roles for the stylus communication
are:

• Peripheral – Usually small, low-power devices that advertise a
set of data features and can connect to more powerful central
devices to output data.

• Central – A device that scans for advertising peripherals and
creates a connection to receive data.

4.2.1 Peripheral
The stylus acts as the peripheral device for the BLE communication.
It advertises that it supports the Nordic Universal Asynchronous
Receiver/Transmitter (UART) service [31], used to send and receive
serial data over the BLE radio. This allows central devices to create
a connection to the stylus to receive button or analog input states
and to instruct it to play specific haptic effects.

For ease of programming, the stylus uses the commonly avail-
able Arduino programming environment. The arduino-nrf5 library
created by Sandeep Mistry [26] ports the core Arduino libraries to
be available for programming nRF52832 boards. We use an addi-
tional modification of the library created by Matthew Ford [13] that



adds low-powered serial communication functions and sleep timers.
These libraries require that you first flash a SoftDevice, precompiled
binaries that run the BLE protocol stack, onto the stylus hardware.
The stylus uses the Nordic S132 v2.0.1 SoftDevice. The haptic
effects are provided by the Adafruit DRV2605 library [1].

A simplified version of the stylus code is shown in
Listing 1. Fully documented code is available from
https://github.com/bretjackson/OVRStylus. The setup() method,
which Arduino runs when powered up, initializes the pins connect-
ing the buttons to the micro-controller as inputs with internal pullup
resistors. These internal pullup resistors pull the input to the high
state and prevent fluctuations in the current from inadvertently being
read as button presses. It initializes the DRV2605 library, starts the
BLE stack advertising for UART connections, and registers callback
handlers for when a central device connects or disconnects to the
stylus peripheral.

Listing 1: Simplified pseudo-code implementation of the stylus code.
Full code is available at https://github.com/bretjackson/OVRStylus

1 void setup() {

2 // Set the micro-controller pins and IO

3

4 // Initialize the haptic controller module here

5

6 // Initialize and start advertising for connections.

7 ble.setName("OVR Stylus"); // Advertised name

8 ble.setConnectedHandler(handleConnection);

9 ble.setDisconnectedHandler(handleDisconnection);

10 ble.begin();

11 }

12

13 void loop() {

14 // Sleep in low-power mode until data is received

15 sleep();

16 while (ble.available() > 0) {

17 // read message and play haptic effect

18 }

19 }

20

21 void handleConnection(BLECentral& central) {

22 sleepTimer.start(handleSleepTimer);

23 }

24

25 void handleDisconnection(BLECentral& central) {

26 sleepTimer.stop();

27 }

28

29 void handleSleepTimer() {

30 // Update current state of the buttons and analog

31 // input and sendStateUpdate if changed

32 }

33

34 void sendStateUpdate() {

35 byte states = 0b00000000;

36 if (button0 == LOW) {

37 bitSet(states, 7);

38 }

39 if (button1 == LOW) {

40 bitSet(states, 6);

41 }

42

43 for(int i = 0; i < 6; i++) {

44 if (bitRead(softpotState , i)) {

45 bitSet(states, i);

46 }

47 }

48 ble.write(MESSAGE_DELIMITER); ble.write(states);

49 ble.flush();

50 }

The loop() method is then repeatedly called. It sleeps the pro-
cessor in a low-powered mode to save energy until a message is
received over BLE instructing the stylus to play a haptic effect. The
BLE radio interrupts the processor, waking it from the sleep state.
The message is read and the indicated haptic effect is triggered on
the DRV2605 controller.

Button input is handled when a controller connects to the periph-
eral device. A sleep timer is started that polls the handleSleepTimer()

callback every 2ms to determine if the buttons or analog SoftPot
state have changed. This interval can be adjusted if needed. Setting
it less frequently saves battery life but potentially adds additional
lag to the input. If the input state changes, the controller sends a
serial message to the central device indicating the new state.

4.2.2 Central

The implementation of a central device to connect with the OVR
Stylus and respond to input is somewhat arbitrary. The Bluetooth
Low Energy protocol is available on most major operating system
platforms, and any could be used to write a central program to
connect with the stylus. In this section we describe our specific
implementation to make a complete system, although other options
could easily be substituted without changing the stylus design or
software running on it.

Each OS defines their own BLE stack with associated library
calls, making it challenging to write a cross platform central device.
For example, Apple’s iOS allows a programmer to access the built in
BLE calls using Swift, but this same code will not run on Windows.
Our approach avoids this cross-platform compatibility issue by using
a second BLE micro-controller device plugged into a USB port on
the host machine to act as an intermediary. The device acts as a BLE-
to-serial repeater, receiving Bluetooth messages from the stylus and
repeating them on a serial connection to the host machine.

The specific device used as the central is an Arduino Nano 33
BLE development board, that can be programmed as a central BLE
device using the ArduinoBLE library [2]. The central code starts by
scanning for peripherals in range that advertise the Nordic UART
service. If it finds one with a matching name “OVR Stylus”, it
initiates a connection to the stylus peripheral.

While the central device is connected to the stylus, it forwards
messages from the BLE radio to the serial port and vis-a-versa. This
code is shown in Listing 2.

Listing 2: The central device forwards messages received from the
stylus peripheral to the serial port of the host computer.

1 while (peripheral.connected()) {

2 if (Serial.available() > 0) {

3 byte hostByte = Serial.read();

4 rxCharacteristic.writeValue(hostByte);

5 }

6

7 if (txCharac.valueUpdated()) {

8 // lp_BLESerial.h buffers in sets of 20 bytes

9 byte bleBytes[20];

10 int readLen = txCharac.readValue(bleBytes, 20);

11 Serial.write(bleBytes, readLen);

12 }

13 }

Forwarding messages to the host computer’s serial port enables
the OVR Stylus input to integrate with VR applications using the
VRPN library [32]. We have written a new device class for VRPN to
support the OVR Stylus. The class inherits from vrpn_analog_serial

and vrpn_button_filter. The relevant code for the get_report()

method used to parse the button states from the serial input is show
in Listing 3.



Listing 3: The simplified report method for the vrpn OVRStylus VRPN
device.

1 void vrpn_OVRStylus::get_report()

2 {

3 int i;

4 if (status == vrpn_ANALOG_SYNCING) {

5 if (1 == vrpn_read_available_characters(serial_fd ,

6 buffer, 1)) {

7 // if not a message start, we have an error

8 if (buffer[0] != _messageStartByte) {

9 return;

10 }

11 _num_read = 0;

12 status = vrpn_ANALOG_PARTIAL;

13 }

14 }

15 if (status == vrpn_ANALOG_PARTIAL){

16 int result = vrpn_read_available_characters(

17 serial_fd ,

18 &buffer[_num_read],

19 _expectedNumChars -_num_read);

20

21 _num_read += result;

22 if (_num_read < _expectedNumChars) {

23 return;

24 }

25

26 for (i = 0; i < 2; i++) {

27 lastbuttons[i] = buttons[i];

28 }

29

30 buttons[0] = static_cast <unsigned char>((buffer[0]

31 & (1 << 7)) ? VRPN_BUTTON_ON : VRPN_BUTTON_OFF);

32 buttons[1] = static_cast <unsigned char>((buffer[0]

33 & (1 << 6)) ? VRPN_BUTTON_ON : VRPN_BUTTON_OFF);

34

35 vrpn_Analog::last[0] = vrpn_Analog::channel[0];

36 // Softpot value is in lowest six bits

37 vrpn_Analog::channel[0]=buffer[0] & ((1<<6) - 1);

38

39 status = vrpn_ANALOG_REPORT_READY;

40 report_changes();

41 status = vrpn_ANALOG_SYNCING;

42 }

43 }

4.2.3 Communication Protocol

The communication protocol between the OVR Stylus and host
computer is designed to be as simple as possible to minimize the
number of bytes that need to be sent, reducing lag. Messages from
the stylus to the host follow a two byte format.

1. The first byte holds a message start character, ‘!’ in our imple-
mentation.

2. The second byte encodes the button and analog states.

Because the states are encoded only in one byte, the message start
byte is nonessential. However, including it adds minimal latency
with additional protection for identifying corrupt messages.

The states are encoded in the second byte using the following
scheme:

• The highest bit represents the state of the first button. A value
of one indicates that it is currently pressed.

• The second highest bit represents the state of the second button.

• The six remaining bits encode the analog potentiometer value
from 0–63.

This design does involve a trade-off. The SoftPot potentiometer
is able to output values from 0–1023 but only able to transmit from
0–63. We found that in general the full output was not very stable
when using a finger as a slider on the surface. Even keeping the
finger still resulted in small fluctuations. Remapping the input to the
smaller range enabled more stable results, while 64 possible values
still meets the needs for most of our applications. If an application
needs the larger range, this code can easily be modified to transmit
the value with more bytes. The SoftPot input is further stabilized
using exponential filtering of the raw value.

Messages from the host computer to the stylus follow a similar
format of a message start byte, ‘!’, followed by an integer from
1–123 that corresponds with haptic effect IDs pre-programmed into
the DVR2605 LRA controller.

5 DISCUSSION

We gained several insights during the process of designing and
prototyping the OVR Stylus. Below, we reflect on these lessons
learned with suggestions for future designers of novel input devices
for VR applications.

Custom PCB design allows for flexibility. The primary differ-
ence between the first version of the stylus and the current is the use
of a custom designed PCB electronics board. This allows for the thin
case design that is critical for the stylus to perform like a pen in 3D
space. It also allows for flexibility. Using a tool like Autodesk Eagle,
we could lay out the components of the circuit in a different config-
uration to make other novel input devices. For example bracelets
could be made to explore body-based interactions [20], or using a
square layout configuration rather than rectangular could be used
to make a wearable ring input device. The OVR Stylus’ electronic
circuit schematic is generalizable enough to support creation of these
other types of devices with little modification other than the layout
of components.

Linked design tools boost accuracy and speed. Multiple 3D
modeling systems are available to design the stylus case. However,
the chosen tool, Autodesk Fusion 360, directly integrates with the
Eagle PCB design tool. This enabled us to automatically import a
3D model of the circuit board, complete with modeled components,
enabling adjustment of the case design for taller components and
clearances without having to wait for the case to be 3D printed and
tested.

3D printing supports iteration. Using 3D printing to build
the case components enables rapid iteration of the design. Our
process required several iterations on the design of the tracking
antler configuration for the optical tracking. Initial designs were
constrained in size, however they did not spread the tracking markers
far enough apart that they could easily be distinguished by our optical
tracking system.

Design for modification. We specifically designed the stylus
to use end-caps that thread onto the main case so that they would
be modifiable in the future. This allows for adjustment to different
tracking configurations by changing the rear end-cap. Additionally,
the stylus function can be changed in the future by adjusting the front
cap. For example, in a VR surgery training simulator the pointed
tip could be replaced with a mock scalpel shape, or a dentistry
simulator could replace it with a dentist’s pick. An augmented
reality application could replace the tip with an actual marker to
enable real drawing while tracking the digital twin.

In addition, we recommend supporting more input/output pin
locations on the PCB than are needed for the number of buttons and
other inputs actually used. Our design includes four additional pin
locations that provide opportunities to add additional sensors to the
design in the future.



6 CONCLUSION

We have presented the OVR Stylus as an open-source alternative
to commercial 3D VR pen devices. From our experience, the thin,
light-weight design supports extended use. We have shared the
hardware and software implementations and design files to spur
others to quickly and cheaply develop their own version, and our
discussion of the design process and lessons learned will hopefully
inspire more creative custom development of novel input devices for
VR.

ACKNOWLEDGMENTS

This work was supported in part by a Wallace scholarly activities
grant from Macalester College.

REFERENCES

[1] Adafruit. DRV2605. (github.com/adafruit/Adafruit DRV2605 Library).
Accessed: 2020-01-29.

[2] Arduino. Arduinoble library. (arduino.cc/en/Reference/ArduinoBLE).
Accessed: 2020-01-29.

[3] R. Arora, R. Habib Kazi, T. Grossman, G. Fitzmaurice, and K. Singh.
Symbiosissketch: Combining 2D & 3Dsketching for designing detailed
3D objects in situ. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, pp. 1–15, 2018.

[4] Autodesk Inc. Eagle. (autodesk.com/products/eagle/overview). Ac-
cessed: 2020-01-29.

[5] Autodesk Inc. Fusion 360. (https://www.autodesk.com/products/fusion-
360/overview). Accessed: 2020-01-29.

[6] Bluetooth SIG, inc. Bluetooth 5 core specification.
(https://www.bluetooth.com/specifications/bluetooth-core-
specification/). Accessed: 2020-01-29.

[7] S. Boring, M. Jurmu, and A. Butz. Scroll, tilt or move it: using mobile
phones to continuously control pointers on large public displays. In
Proceedings of the 21st Annual Conference of the Australian Computer-
Human Interaction Special Interest Group: Design: Open 24/7, pp.
161–168, 2009.

[8] M. A. Brown and W. Stuerzlinger. Exploring the throughput potential
of in-air pointing. In International Conference on Human-Computer
Interaction, pp. 13–24. Springer, 2016.

[9] J. Clarkson. 6 - human capability and product design. In H. N. Schiffer-
stein and P. Hekkert, eds., Product Experience, pp. 165–198. Elsevier,
San Diego, 2008. doi: 10.1016/B978-008045089-6.50009-5

[10] Diodes Inc. AP2112k linear voltage regulator.
(https://www.diodes.com/assets/Datasheets/AP2112.pdf). Ac-
cessed: 2020-01-29.

[11] Fasttrak. Polyhemus digitizer. (https://polhemus.com/). Accessed:
2020-01-29.

[12] M. Fiorentino, A. E. Uva, and G. Monno. The Senstylus: a novel
rumble-feedback pen device for cad application in virtual reality.
WSCG, 2005.

[13] M. Ford. Easy very low power BLE in arduino.
(https://www.forward.com.au/pfod/BLE/LowPower/index.html).
Accessed: 2020-01-29.

[14] Fyber Labs Inc. LRA haptic flex module.
(https://www.tindie.com/products/fyberlabs/lra-haptic-flex-module/).
Accessed: 2020-01-29.

[15] W. Global. Wacom digitizer stylus.
[16] Holo-Light inc. Holo-stylus. (https://www.holo-stylus.com/). Ac-

cessed: 2020-01-29.
[17] B. Jackson and D. F. Keefe. Lift-off: Using reference imagery and

freehand sketching to create 3D models in VR. IEEE Transactions on
Visualization and Computer Graphics, 22(4):1442–1451, 2016.

[18] B. Jackson and D. F. Keefe. From painting to widgets, 6-DOF stylus
input beyond the pointing metaphor. In W. Sherman, ed., VR Developer
Gems, chap. 14, pp. 243–268. CRC Press, 2019.

[19] S. Kamuro, K. Minamizawa, N. Kawakami, and S. Tachi. Ungrounded
kinesthetic pen for haptic interaction with virtual environments. In
RO-MAN 2009-The 18th IEEE International Symposium on Robot and
Human Interactive Communication, pp. 436–441. IEEE, 2009.

[20] R. Khadka and A. Banic. Body-prop interaction: Evaluation of aug-
mented open discs and egocentric body-based interaction. In 2019
IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp.
1705–1710. IEEE, 2019.

[21] E. Kruijff, G. Wesche, K. Riege, G. Goebbels, M. Kunstman, and
D. Schmalstieg. Tactylus, a pen-input device exploring audiotactile
sensory binding. In Proceedings of the ACM symposium on Virtual
reality software and technology, pp. 312–315. ACM, 2006.

[22] Logitech. VR ink stylus. (https://www.logitech.com/en-us/promo/vr-
ink.html). Accessed: 2020-01-29.

[23] R. Lyu, H. Hao, W. Chen, Y. Liu, F. Wang, and A. C. Wu. Elastylus:
flexible haptic painting stylus. In SIGGRAPH Asia 2015 Emerging
Technologies, pp. 1–3. 2015. doi: 10.1145/2818466.2818475

[24] Massless Corp. Massless pen. (https://massless.io/). Accessed: 2020-
01-29.

[25] Microchip. MCP73831 li-polymer battery charge manager chip.
(https://www.microchip.com/wwwproducts/en/en024903). Accessed:
2020-01-29.

[26] S. Mistry. Arduino core library for nordic semiconductor nRF5 based
boards. (https://github.com/sandeepmistry/arduino-nRF5). Accessed:
2020-01-29.

[27] S. Nagasaka, Y. Uranishi, S. Yoshimoto, M. Imura, and O. Oshiro.
Haptylus: haptic stylus for interaction with virtual objects behind a
touch screen. In SIGGRAPH Asia 2014 Emerging Technologies, pp.
1–3. 2014.

[28] D.-M. Pham and W. Stuerzlinger. Is the pen mightier than the con-
troller? a comparison of input devices for selection in virtual and
augmented reality. In 25th ACM Symposium on Virtual Reality Soft-
ware and Technology, pp. 1–11, 2019.

[29] Redbear Labs. MB-N2 bluetooth low energy module.
(https://github.com/redbear/nRF5x/tree/master/nRF52832). Ac-
cessed: 2020-01-29.

[30] N. Semiconductor. nRF52832 bluetooth 5 chip.
(https://www.nordicsemi.com/Products/Low-power-short-range-
wireless/nRF52832). Accessed: 2020-01-29.

[31] N. Semiconductor. UART/serial emulation over BLE.
(https://tinyurl.com/whohol7). Accessed: 2020-01-29.

[32] R. M. Taylor, T. C. Hudson, A. Seeger, H. Weber, J. Juliano, and
A. T. Helser. VRPN: a device-independent, network-transparent VR
peripheral system. In Proceedings of the ACM symposium on Virtual
reality software and technology, pp. 55–61, 2001.

[33] R. J. Teather and W. Stuerzlinger. Pointing at 3D targets in a stereo
head-tracked virtual environment. In 2011 IEEE Symposium on 3D
User Interfaces (3DUI), pp. 87–94. IEEE, 2011.

[34] Ultrahaptics Ltd. Leap motion. (https://www.leapmotion.com/). Ac-
cessed: 2020-01-29.

[35] A. Withana, M. Kondo, Y. Makino, G. Kakehi, M. Sugimoto, and
M. Inami. ImpAct: Immersive haptic stylus to enable direct touch
and manipulation for surface computing. Computers in Entertainment
(CIE), 8(2):1–16, 2010.

[36] zSpace. zSpace stylus. (https://zspace.com/technology/). Accessed:
2020-01-29.

(
(
(
(
(
http://dx.doi.org/https://doi.org/10.1016/B978-008045089-6.50009-5
http://dx.doi.org/https://doi.org/10.1016/B978-008045089-6.50009-5
http://dx.doi.org/https://doi.org/10.1016/B978-008045089-6.50009-5
http://dx.doi.org/https://doi.org/10.1016/B978-008045089-6.50009-5
http://dx.doi.org/https://doi.org/10.1016/B978-008045089-6.50009-5
http://dx.doi.org/https://doi.org/10.1016/B978-008045089-6.50009-5
http://dx.doi.org/https://doi.org/10.1016/B978-008045089-6.50009-5
http://dx.doi.org/https://doi.org/10.1016/B978-008045089-6.50009-5
https://doi.org/10.1016/B978-008045089-6.50009-5
(
(
(
(
(
(
http://dx.doi.org/https://doi.org/10.1145/2818466.2818475
http://dx.doi.org/https://doi.org/10.1145/2818466.2818475
http://dx.doi.org/https://doi.org/10.1145/2818466.2818475
http://dx.doi.org/https://doi.org/10.1145/2818466.2818475
http://dx.doi.org/https://doi.org/10.1145/2818466.2818475
http://dx.doi.org/https://doi.org/10.1145/2818466.2818475
http://dx.doi.org/https://doi.org/10.1145/2818466.2818475
https://doi.org/10.1145/2818466.2818475
(
(
(
(
(
(
(
(

	Introduction
	Related Work
	Design Considerations
	OVR Stylus
	Hardware
	Software
	Peripheral
	Central
	Communication Protocol


	Discussion
	Conclusion

