
Understanding Support Vector Machine Classifications via a
Recommender System-Like Approach

David Barbella1, Sami Benzaid2, Janara Christensen3, Bret Jackson4, X. Victor Qin5, David Musicant6
1Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, USA

2Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
3Department of Computer Science and Engineering, University of Washington, Seattle, WA, USA

4Ultralingua, Inc., Minneapolis, MN, USA
5Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI, USA

6Department of Computer Science, Carleton College, Northfield, MN, USA

Abstract— Support vector machines are a valuable tool for
making classifications, but their black-box nature means that
they lack the natural explanatory value that many other
classifiers possess. Alternatively, many popular websites
have shown recent success in explaining recommendations
based on behavior of other users. Inspired by these ideas, we
suggest two novel methods for providing insight into local
classifications produced by a support vector machine. In the
first, we report the support vectors most influential in the
final classification for a particular test point. In the second,
we determine which features of that test point would need to
be altered (and by how much) in order to be placed on the
separating surface between the two classifications. We call
the latter technique “border classification.” In addition to
introducing these explanatory techniques, we also present
a free-for-download software tool that enables users to
visualize these insights graphically.

Keywords: SVMs, classification, explanations, recommendations

1. Introduction
Support vector machines (SVMs) [1], [2] are a well-

known supervised learning technique for performing binary
classification. SVMs are very accurate and generalize well
to a wide range of applications. Because support vector
machines are “black-box” classifiers, the decisions they
make are not always easily explainable. By this we mean that
the model produced does not naturally provide any useful
intuitive reasons about why a particular point is classified in
one class rather than another. For instance, consider an SVM
used by a bank to determine to whom they will loan money.
If a customer’s loan application is rejected and they would
like to know why, then it is not very useful to only be able to
say that the algorithm came back with a number lower than
some required threshold. It would be much more satisfactory
to the customer to be able to tell them that they were denied
credit because their income is too low and they have six
outstanding loans. Decision trees can provide a model that
is much more easily interpreted, but cannot always achieve
results as accurate as those produced by an SVM.

Recently Fung et al. [3] described the importance of
understandable classifications for computer aided diagnosis
(CAD). CAD systems provide analysis and interpretation of
medical images. Although these systems have been shown
to be highly successful in both research labs and clinical
settings, doctors are reluctant to trust a diagnosis without
receiving a convincing reason for it. Without understandable
reasons for the diagnoses produced by these systems, they
face problems when undergoing regulation and acceptance
in the medical community.

Online recommendation systems have shown recent suc-
cess in convincing users that the recommendations make
sense [4]. Websites such as Amazon.com, MovieLens, Yahoo
Launchcast, Netflix, and others explain recommendations in
part by telling users “Other people that are similar to you
have rated this item highly.” This approach for explanations
is easy to understand, and is becoming a familiar approach.
Inspired in part by such systems, we propose two techniques
to explain classifications provided by support vector machine
classifiers for continuous data of relatively low dimension-
ality. A key distinction between our approach and other
approaches for explaining SVM classifiers (see Section 2)
is that our techniques explain decisions at the local level,
i.e. for an individual test point. The first technique involves
finding the most relevant support vectors for an individual
point, that is those that were most influential in determining
the class into which the point was placed. The second
technique involves determining the change necessary in a
test point’s features to place that point on the separating
surface between the two classes. The idea here is that any
further change in this direction will place the point on the
opposite side of the separating surface, and thus serves as an
explanation of how much a test point would need to change
in order to be classified in the other class. This technique,
which we call border classification, is a variation on the
inverse classification technique described below.

2. Related Work
Previous research done in the field of explaining support

vector machine classifications includes work in sensitivity

analysis [5], inverse classification [6], and rule extraction [3],
[7]–[12]. Of these methods, rule extraction has received the
most attention of late. Previously applied to neural networks
[13], rule extraction applications have been extended to now
include SVMs. SVM rule extraction techniques fall into two
broad categories: pedagogical techniques and decomposition
techniques [7]. Pedagogical techniques [8] extract rules
relating the inputs and outputs of the model, using the trained
model to generate training examples which can then be used
by a comprehensible learning algorithm (such as decision
trees) to create a comprehensible classification model. The
principle is that the trained model can create examples that
better represent the data than the original dataset which
contains errors and noise. Decomposition techniques, on the
other hand, are much more reliant on the structure of the
SVM. For example, in one approach [3], the SVM hyper-
plane is approximated with axis-parallel surfaces. Although
rule extraction has been known to produce classifiers that are
easily comprehensible, they produce secondary models of
worse accuracy. Moreover, even though these models may be
reasonably understandable from a management perspective,
they still lack the simplicity and familiarity to an individual
user that recommendation systems have managed to provide.
Therefore, instead of attempting to create a new, more easily
explainable model based on the model made by the SVM,
both of our proposed techniques explain the model made
by the SVM directly for an individual point, eliminating the
need for an additional model.

Two other methods of understanding classifiers are sensi-
tivity analysis and inverse classification. Sensitivity analysis
techniques measure the rate of change in the output of a
model caused by the changes in the inputs of the model. This
analysis can then be used to measure which input features
are most important to achieve accurate output values [5].
Inverse classification techniques take an entirely different
approach. Rather than attempting to explain the model,
inverse classification describes how one point can be moved
into another classification. More formally, the inverse clas-
sification problem consists of attempting to find the change
in attribute values necessary to move a member of one
classification into another classification. A set of prototype
cases of each category is required, as well as specification of
a similarity function. Our second proposed technique, border
classification, is similar to inverse classification in that it
finds the minimum change of attributes to switch the classi-
fication. However, instead of switching the point to another
class, we move the point to the border between classes. Both
inverse classification and border classification seek to solve
an optimization problem that is highly nonlinear, and thus
a global minimum value cannot readily be found. Previous
work on inverse classification [6] uses genetic algorithms
to solve the problem. We describe how to solve border
classification as a nonlinear program, which ensures that
the result will be at least a local minimum. Other nonlinear

optimization strategies, including genetic algorithms, could
be applied to our approach as well.

The key difference in the conceptualization of inverse
classification and border classification can be alternatively
explained by considering the algorithms directly. In the case
of inverse classification, a set of test points in the opposite
class from the test point under consideration is used to seed
a genetic algorithm. The goal of the genetic algorithm is to
evolve a series of points in this opposite class over a series of
generations, and ultimately choose one that is relatively close
to the original test point. Thus, the inverse classification
paper describes inverse classification as that of finding a
point in the opposite class [6]. In some sense, one would
hope to do better than this: if one were to find “a point in
the opposite class close to a test point,” one could easily
find a point even closer by moving in between that point
and the separating surface. Therefore, we address this by
formulating an optimization problem which constrains the
solution to being on the separating surface itself.

Finally, Subianto et al. recently proposed a method for
explaining classifiers whose input features are nominal [14].
This idea explains the classifier both at the local level (for
an individual data point) and at the global level (for the
entire model). The approach ensures local understandability
by explaining why each test point was classified the way it
was. More specifically, local explanations are defined as “a
minimal set of attributes, such that there exists a change of
values for the attributes in that set that would change the as-
signed class” [14]. This goal is similar to the idea of inverse
classification and also to our border classification technique.
The key difference is that the approach by Subianto et al.
only works on discrete-valued datasets, and thus consists
of finding a “nearest point” in the opposite class. Border
classification differs from this approach in that it is defined
for continuous-valued features, and thus it also differs (just
as border classification differs from inverse classification)
in that it finds a point on the separating surface, not on
the opposite side. Subianto et al. also describe a technique
for global explainability, which is maintained by attribute
weights — i.e., the importance of an attribute in the global
classifier in a similar fashion to sensitivity analysis. It is
important to note that this method is not restricted to support
vector machines, but can be used for any classifier. However,
this method is limited by its restriction to discrete data.

3. Notation and Review of SVMs
In this section we define the notation that we will be using

to describe support vector machines [1]–[3], [7], and related
expressions. Suppose we have a set of m data points ~xi ∈ Rn

along with each point’s classification yi, where yi can take
on one of two possible values: −1 or 1.

The linear support vector machine is defined as the
following optimization problem:

min
~w,b,ξi≥0

1
2
‖~w‖2

2 + C

m∑
i=1

ξi

such that yi(~w · ~xi − b) + ξi ≥ 1
(1)

where ξi is the error for a given training point ~xi, ~w is
the vector of coefficients for the best separating hyperplane,
b is the offset for that hyperplane, and C is a (usually exper-
imentally determined) constant that represents the emphasis
that is to be placed on minimizing the error. If C is too
large, the emphasis on error avoidance can overwhelm the
regularization term (‖~w‖2

2) and result in overfitting. If C is
too small, classification accuracy might be sacrificed.

It is often useful to consider the support vector machine
in its equivalent dual formulation [1], [2]:

max
αi

− 1
2

m∑
i,j

yiyj~xi · ~xjαiαj +
m∑

i=1

αi

such that
m∑

i=1

αiyi = 0 and 0 ≤ αi ≤ C

(2)

By replacing the dot product in the objective function above
with a kernel function, we obtain the nonlinear support
vector machine [1], [2]:

max
αi

− 1
2

m∑
i,j

yiyjK(~xi, ~xj)αiαj +
m∑

i=1

αi

such that
∑m

i=1 αiyi = 0 and 0 ≤ αi ≤ C

(3)

Once this problem has been solved, αi and b (which can be
determined from the solution to this problem [1], [2]) can
be used to classify test point ~x based on:

f(~x) = sign[
m∑

i=1

αiyiK(~xi, ~x)− b] (4)

which classifies ~x as either 1 or −1.
To interpret equation (4), we see that the dual variables αi

represent the importance of a particular support vector within
the model. A high value of αi associated with a particular
support vector ~xi indicates that the kernel value calculated
using this support vector will have more influence on the
final value for f(~x).

While the kernel function represents an implicit mapping
of the points into a higher dimensional space, [1], [2],
one can also interpret the kernel K(~xi, ~xj) as a similarity
measure between points ~xi and ~xj . Different kernels yield
different interpretations of similarity. The most popular non-
linear kernel in practice is the Gaussian radial basis kernel:

K(~xi, ~xj) = e−γ||~xi−~xj ||22 (5)

where γ is a user-chosen parameter. This kernel provides
a natural sense of similarity, where a value of 1 indicates
that the two points are identical, and a value of 0 indicates
that the points are infinitely far apart. If we choose the dot
product as the kernel function, we obtain the linear case

of the SVM, as mentioned above. In this case similarity
is understood to be related to the cosine of the angle
between the two vectors. Since the Gaussian radial basis
sense of similarity is somewhat more intuitive, we focus on it
throughout our experiments, but our notions of explainability
apply to any kernel function.

A number of free and high-quality software packages exist
to solve this optimization problem. In our case, we have
chosen to leverage SVMlight [15] for this purpose, as it is
well-known and has several convenient features.

4. Finding important support vectors
When a support vector machine makes a classification,

some of the support vectors are more influential than others.
This is a function of the support vector’s corresponding value
of α and of its “similarity” to the test point as determined
by the kernel function. Consider the case of an individual
applying for a loan. If we are able to identify the support
vectors with the largest numerical effect on the classification
of the test point (in the direction of its final classification),
they allow us to offer an explanation of the form “the
individual was rejected for a loan in large part due to his or
her similarity to these other individuals that were previously
identified as bad credit risks.” We therefore define the pull
pi(~x) of support vector ~xi on test point ~x to be a measure
of the role ~xi played in categorizing ~x. Specifically, let:

pi(~x) = αiyiK(~xi, ~x) (6)

The support vectors with the largest pull values (in
magnitude) are the ones that contribute the most to the
classification that it receives, and it is these support vectors
that provide an “explanation” for the classification for a
given test point. The pull is based on the kernel-function
similarity between the support vector and the test point, as
well as on the α value, which is a measure of how important
for classification the support vector is in general. Therefore,
presenting a user with these particular support vectors (in an
appropriate visualization environment) yields fairly simple
information to help a user understand why a classification
has been made as it has. In the credit example suggested
in Section 1, the support vectors with the largest pull are
those individuals who have a strong combination of two
factors: they are generally good indicators of whether or not
an individual similar to them should receive credit — they
have high α values — and they are similar to the loan-seeker
in the attributes used to construct the model.

A related problem is that of creating a “report set” of
support vectors to report as “explanatory.” One extreme is
to report all of them, in a list ordered by pull. This list
would be sorted in descending order if the test point ~x
were classified in class 1, and ascending order if classified
in −1; this would then place the most relevant support
vectors at the top of the list. The other extreme is to simply
report the support vector at the top of that list, which is

the one single support vector that had the greatest pull in
the direction of the test point’s final classification. There
are various compromises. After sorting the support vectors
by pull values, one could simply pick the top n support
vectors on that list. Alternatively, one could look for a
transition point when the pull values changed significantly,
and report all support vectors above this transition point. In
our demonstration software (Section 6), we have chosen to
present the top five support vectors on that list. Different
applications might find different alternatives to be clearer.

The above approach for choosing explanatory support
vectors makes more intuitive sense when using a kernel that
always yields non-negative values, such as the Gaussian RBF
kernel. In the case of this kernel in particular (and some
others), the kernel can be easily thought of as a similarity
metric. The top n explanatory support vectors are understood
to be the support vectors that dominate due to large α values
(the support vectors are globally important), large kernel val-
ues (they are similar to the test point), or some combination
of the two. This interpretation is more complicated when
a kernel that may produce negative values is used, such
as the linear kernel. In this case, a support vector in the
opposite class as the test point might actually sort near the
top of the list. Users might consider this confusing; on the
other hand, there is a natural interpretation. In the linear
case, for example, a negative kernel value indicates some
degree of difference between the test point and the support
vector, as it requires that the angle between the two vectors is
between 90 and 180 degrees. This situation could effectively
be described as the support vector “pushing” the test point
towards the other class. When using the linear kernel in
our software, we currently suppress these “opposite-class”
support vectors from being shown, but we believe with
proper user training a case could be made for showing them.

5. Finding a nearby border point
Consider again the example of someone seeking a loan

who has been rejected. One way of helping this individual
understand why a rejection decision was made would be to
provide the profile of a fictional individual that would be
as similar as possible to this loan-seeker, yet would be just
on the border of being “acceptable.” Seeing the differences
between oneself and a “an approximation to you that would
get you accepted for a loan” could provide insight and
believability to the classification.

Therefore, given a test point of one classification, we wish
to find a nearby point to it on the separating surface. In
principle, finding the closest point on the separating surface
would be optimal, but due to the highly nonlinear nature
of the problem this is not feasible in practice. We therefore
focus on finding a point on the border whose distance is
locally optimal. This nearby point provides a set of relatively
minimal feature changes that would result in the point being
ambiguously classified. The process of finding this nearby

point, a process that we call “border classification,” is found
by solving a nonlinear constrained optimization problem. Let
~x be the test point in question, and let ~a be a closest-point
candidate. We attempt to find the closest point to ~x while
constraining ~a to lie on the separating surface. This can be
done by minimizing the square of the Euclidean distance
between the two points ~a and ~x:

D2(~a, ~x) =
n∑

j=1

(~a[j]− ~x[j])2 (7)

Here ~a[j] is the j-th component of ~a, and ~x[j] is the j-th
component of ~x. (Minimizing the squared distance simplifies
the optimization problem by eliminating the square root that
would otherwise be present.) Note that we have chosen
to minimize the distance in the original input space, and
not in the feature space represented by the kernel. This is
intentional: the goal is to present a user with the (locally)
minimal change necessary in order to reach the border. While
the nearest border point in the feature space has relevance
for classification, it doesn’t well answer the question for the
end-user of “what are the minimal changes that put me on the
border?” In order for this information to be understood easily
as a comparison, we argue that this calculation should be
done in the input space. Of course, if one argued otherwise,
our proposed technique could be modified to do so.

The minimization described in (7) is subject to the con-
straint that ~a lies on the separating surface. Based on the
classifier given in (4), the equation for that surface is:

m∑
i=1

αiyiK(~xi,~a)− b = 0. (8)

One convenient side-effect of our formulation of this
problem is that we can easily add additional constraints
to enhance explainability by taking into account real-world
restrictions. For example, certain features (such as age) may
be difficult or impossible to change, and therefore one may
desire a border classification point whose values for those
features are constrained to be the same as for ~x. A solution
requiring a change in these “unchangeable” features might
not be considered to be particularly useful as an explanation.
Furthermore, features can be constrained in other ways to
impose physical or other restrictions. For example, physical
quantities might be restricted to non-negative values only.

To illustrate an example: suppose that for our loan-seeker,
certain features such as age, salary, and outstanding loans
might be constrained. It is not helpful to suggest to the user
that changing age will help get a loan, as it is not a feature
that can be readily adjusted. It is also impossible to earn a
negative salary, or have negative outstanding loans. These
constraints, combined with the equation for the separating
surface, give us the following specific optimization problem:

min
~a

n∑
j

(~a[j]− ~x[j])2, (9)

Subject to the constraints:
m∑

i=1

αiyiK(~xi,~a)− b = 0

~a[q] = ~x[q]
~a[r] ≥ 0
~a[s] ≥ 0

(10)

where q, r, and s are the indexes of the dimensions that cor-
respond to age, salary, and outstanding loans, respectively.

One could go further by observing that, for example, it
might be easier to pay off loans than to get one’s salary
increased. Therefore, weights could be added to the objective
function (9) to do this. Though we have not implemented
this in the current version of our software, it would be a
straightforward extension.

In order to solve these minimization problems, the General
Algebraic Modeling System (GAMS) was used. We read in
the solution values for αi and b from the model file generated
by SVMlight during training, and combine them with the
other information necessary to format an appropriate GAMS
[16] input file with the appropriate variables, constants,
and constraints designated. The non-linear solver CONOPT3
[17] is then used to perform a non-linear minimization on the
optimization problem, and returns the given coordinates of
the locally optimal point ~a. We note that there are a variety of
approaches that one might use to improve the quality of this
local minimum, including simulated annealing, randomized
restarts, genetic algorithms, and other strategies [18]. The
inverse classification approach [6], for example, uses genetic
algorithms to solve a related problem.

Once a particular value for the border classification point
~a is found, the features for both the user and this nearby
point can then be compared in the graphical user interface,
granting the user further insight.

We again point out that when solving this non-linear
optimization problem, we achieve a distinct goal when
compared to the work done on inverse classification using
genetic algorithms [6]. Instead of evaluating discrete points
of an opposite classification to find a minimal-cost result, we
attempt to find a minimal solution by solving an optimization
problem with constraints. Furthermore, we are interested in
a point on the classification boundary, as opposed to some
point of the opposite classification.

6. Results
In order to demonstrate the ideas presented above, we

have created a software tool called “SVMzen.” SVMzen is
specifically targeted to the domain specialist rather than the
machine learning specialist. The user interface, shown in a
large screenshot at www.cs.carleton.edu/faculty/
dmusican/expsvms/screenshot.png, was designed
with the intent to be as easy to use and understand as pos-
sible. (We have not included the screenshot directly in this

Figure 1: A non-diabetic patient and its five most influential
support vectors.

paper due to lack of space.) SVMzen serves as a graphical
user interface to build classification models and classify test
points (as do Weka [19], LIBSVM [20], and others), but it
also displays the explanations for these classification models
by implementing the proposed techniques.

After a user selects a training set file and chooses pa-
rameters for the SVM, SVMzen creates a model file by
running SVMlight [15]. Next, the user can import a test
set file and examine each of the test points individually in
the user interface for local understanding of the model. For
each selected test point, SVMzen displays the classification
and the values for each of its attributes. It also displays an
interactive chart which was implemented using jFreeChart
[21]. This chart, seen in Figure 1, shows the values for each
attribute of the support vectors that had the largest effect on
classifying that particular point. Since each feature can have
dramatically different scales and ranges, the chart we show
has normalized values for each dimension, where we have
subtracted the mean and divided by the standard deviation.
Sliders to the left of the chart allow the user to modify
the values of the test point’s attributes and re-classify the
point with the new values. This functionality allows the user
to manually test the amount of change necessary for each
attribute in order to change the classification, and also allows
the user to see how sensitive each attribute is to change.
Additionally, for a selected test point, SVMzen performs
border classification in order to calculate changes that would
give the test point an ambiguous classification.

In order to show examples of how the system works, we
focus on the Pima Indian Diabetes dataset [22]. The dataset

Attribute Values
Number of times pregnant 1.00
Plasma glucose 97.00
Diastolic blood pressure 64.00
Triceps skin fold (mm) 19.00
2-Hour serum insulin 82.00
Body mass index 18.2
Diabetes pedigree function 0.30
Age (years) 21.00

Table 1: Medical Data Test Point Values

Figure 2: A non-diabetic point and its most influential
support vector.

contains eight attributes (as specified in Table 1), and two
classifications. We chose to work with the Gaussian radial
basis function as a kernel. Based upon accuracies determined
by SVMlight, we performed some rough experiments on
training and test sets in order to pick values for γ and C
that yielded reasonable results. For purposes of these visu-
alizations, then, we chose γ to be 0.009, and C to be 1100.
In practice, γ and C should be chosen to optimize tuning
accuracy via a process such as tenfold cross validation.

We now choose a sample point from this dataset, and
discuss the various ways in which SVMzen can help the
user understand its classification. The particular point that
we have chosen has the attributes listed in Table 1.

Examining the original chart that is generated by SVMzen
(Fig. 1) allows us to infer a number of possible explana-
tions for this classification. We notice that the majority of
influential support vectors shown have comparatively similar
values to our test point for three attributes (triceps skin fold,
2-hour serum insulin, and plasma glucose). Since they have
the same classification as our test point, we might begin

Attribute Suggested Change
Value From

Original
Number of times pregnant 3.82 +2.82
Plasma glucose 149.65 +52.65
Diastolic blood pressure 68.84 +4.84
Triceps skin fold (mm) 27.13 +8.13
2-Hour serum insulin 79.96 -2.04
Body mass index 32.01 +13.81
Diabetes pedigree function 0.63 +0.33
Age (years) 21.00 N/A

Table 2: Medical Data Border Classification Values

to conclude that these may be characteristics of a patient
with this classification. Our interface allows the user to
explore the other features as well. For example, sliding the
“pregnancies” slider to 13 (see above-mentioned web-based
screenshot) will reclassify this point as diabetic.

Finally, the domain expert might wish to examine some
of the risk factors associated with becoming diabetic in the
context of this particular patient. Border classification, in a
locally minimal fashion, determines the changes required to
place the test point on the separating surface between the
two classes. On the click of a button, SVMzen provides the
values listed in Table 2. (Note that in a similar fashion to
the example in Section 5, we have constrained the age of the
patient to stay fixed.) This gives the domain expert insight
into the patient’s current risk of becoming diabetic by seeing
what changes in the patient’s medical records would cause
a switch in classification. This also helps the domain expert
confirm the diagnosis of a particular patient as the support
vector machine is no longer completely a black box, but is
now able to provide evidence for why patients are classified
as they are.

7. Further Study
There are many directions that additional work on the

topic could take. First, while selecting the support vectors
with the most significant pull is relatively simple, it is not
necessarily the best indicator of which support vectors were
actually responsible for putting one particular test point in
its current classification. Support vectors with high values
of αi may appear on the list of important support vectors
virtually all of the time. In a sense, a test point would
not be placed in a given class particularly because of the
influence of those support vectors, as they have a strong pull
in their direction for any test point. This situation would be
particularly aggravated when using a Gaussian radial basis
kernel with a very small γ, as this tends to homogenize the
kernel values across all support vectors. Future work might
consider approaches for “filtering out” those support vectors
that provide a strong contribution to every test point, and
not just to the one under consideration in particular.

Another potential direction for our approach would be
to use it in order to determine which features are more

important than others. In the current incarnation of our
system, users can use the sliders in SVMzen’s interface
to modify the value of one feature at a time in order
to observe what sorts of changes cause the point to be
reclassified. Through such exploratory behavior, the user can
gain some insight as to which features play a significant
role in the classification. It would be considerably more
desirable, however, to automate this process. We also note
that our approach in its current form is most usable when
the number of features of the dataset is of a size that the
user can eyeball all at once (perhaps 25-30 or so). With
an automated approach for determining important features,
as suggested above, one might show the user only the
particularly significant ones, allowing SVMzen to be used
on datasets with considerably larger numbers of features.

There are other classification algorithms that share enough
similarities with SVMs such that they might also benefit
from methods similar to those presented in this paper. Boost-
ing, for example, also results in a classifier that is a weighted
combination of terms [23], [24]. The boosted classifier is
not a linear combination of kernel functions; rather, it is
a combination of simple classifiers. One could look at the
“pull” of each simple classifier, attempting again to use it
to provide some interpretation as to which simple classifiers
played a significant role in classifying an individual point.

There are numerous other variations of support vector
machines, and the procedures described here could easily be
adapted to many of them. For example, it would be possible
to use a similar process to explain the decisions produced
by a support vector machine with more than two classes.

8. Conclusion
In this paper we introduce two new techniques for ex-

plaining support vector machines on continuous data. Both
techniques explain the model on the local level, i.e. for
an individual test point, as a recommender system might.
The first technique involves finding the support vectors that
make the strongest contribution to the classification of a
particular test point. The second technique is similar to
inverse classification: the goal is to find a relatively minimal
change in order to switch the classification of a test point.
However, instead of minimally switching the classification
(which is not optimally possible in a continuous space), we
propose finding the locally minimal change required to move
the point to the separating surface of the classes. These
techniques add explainability to the results of an SVM clas-
sifier in a format with which users of online recommendation
systems are quite familiar. We have presented a software tool
named SVMzen that allows users to see these explanations
graphically. A user can look at a particular test point and
determine that the test point was classified in that class
due to a specific group of highly weighted support vectors.
Furthermore, the user can examine what changes would be
necessary to move the test point onto the edge between the

two classes. Additionally, a person who wishes to be placed
in the other classification can be told what changes are
necessary for that result, which provides prescriptive advice
for that individual.

More info about SVMzen is available at www.cs.
carleton.edu/faculty/dmusican/expsvms/.

References
[1] V. N. Vapnik, The Nature of Statistical Learning Theory. New York:

Springer, 1995.
[2] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector

Machines. Cambridge: Cambridge University Press, 2000.
[3] G. Fung, S. Sandilya, and R. B. Rao, “Rule extraction from linear

support vector machines,” Proceedings of the 11th Intl. Conference
on Knowledge Discovery in Data Mining, pp. 38–40, 2005.

[4] J. L. Herlocker, J. A. Konstan, and J. Riedl, “Explaining collaborative
filtering recommendations,” in CSCW, 2000, pp. 241–250.

[5] J. Yao, “Sensitivity analysis for data mining,” 2003. [Online].
Available: citeseer.ist.psu.edu/yao03sensitivity.html

[6] M. V. Mannino and M. V. Koushik, “The cost-minimizing inverse
classification problem: a genetic algorithm approach,” Decision Sup-
port Systems, vol. 29, no. 3, pp. 283–300, October 2000.

[7] D. Martens, B. Baesens, T. van Gestel, and J. Vanthienen, “Com-
prehensible credit scoring models using rule extraction from support
vector machines,” European Journal of Operational Research, vol.
183, no. 3, pp. 1466–1476, 2007.

[8] H. Núñez, C. Angulo, and A. Català, “Rule-based learning systems for
support vector machines,” Neural Processing Letters, vol. 24, no. 1,
pp. 1–18, 2006.

[9] J. Diederich, Ed., Rule Extraction from Support Vector Machines, ser.
Studies in Computational Intelligence. Springer, 2008, vol. 80.

[10] N. H. Barakat and A. P. Bradley, “Rule extraction from support vector
machines: A sequential covering approach,” IEEE Trans. Knowl. Data
Eng., vol. 19, no. 6, pp. 729–741, 2007.

[11] N. H. Barakat and J. Diederich, “Eclectic rule-extraction from support
vector machines,” International Journal of Computational Intelli-
gence, vol. 2, no. 1, pp. 59–62, 2005.

[12] D. Martens, B. Baesens, and T. V. Gestel, “Decompositional rule
extraction from support vector machines by active learning,” IEEE
Trans. Knowl. Data Eng., vol. 21, no. 2, pp. 178–191, 2009.

[13] R. Andrews, J. Diederich, and A. Tickle, “Survey and critique of
techniques for extracting rules from trained artificial neural networks,”
Knowledge-Based Systems, vol. 8, pp. 373–389, 1995.

[14] M. Subianto and A. Siebes, “Understanding discrete classifiers with
a case study in gene prediction,” Proceedings of the Seventh IEEE
International Conference on Data Mining, 2007.

[15] T. Joachims, “Making large-scale support vector machine learning
practical,” in Advances in Kernel Methods - Support Vector Learning,
B. Schölkopf and C. J. C. Burges and A. J. Smola, Ed. MIT Press,
1999, pp. 169–184.

[16] GAMS Development Corporation, “GAMS.”
[17] ARKI Consulting & Development, “CONOPT 3.1 Solver.”
[18] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,

2nd ed. New Jersey: Pearson Education, Inc., 2003.
[19] G. Holmes, A. Donkin, and I. H. Witten, “Weka: a machine learning

workbench,” in Proceedings of the Second Australian and New
Zealand Conference on Intelligent Information Systems, Brisbane,
Australia, 1994, pp. 357–361.

[20] C.-C. Chang and C.-J. Lin, “LIBSVM Software,” 2003, available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

[21] D. Gilbert, The JFreeChart Class Library. Object Refinery Limited,
2008.

[22] A. Asuncion and D. Newman, “UCI Machine Learning
Repository,” 2007. [Online]. Available: http://www.ics.uci.edu/
~mlearn/MLRepository.html

[23] R. Meir and G. Rätsch, “An introduction to boosting and leveraging,”
Advanced Lectures on Machine Learning (LNAI2600), 2003.

[24] R. E. Schapire, “A brief introduction to boosting,” Proceedings of the
Sixteenth Intl. Joint Conference on Artificial Intelligence, 1999.

