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ABSTRACT
This paper introduces Cartograph, a visualization system that
harnesses the vast amount of world knowledge encoded within
Wikipedia to create thematic maps of almost any data. Carto-
graph extends previous systems that visualize non-spatial data
using geographic approaches. While these systems required
data with an existing semantic structure, Cartograph unlocks
spatial visualization for a much larger variety of datasets by
enhancing input datasets with semantic information extracted
from Wikipedia. Cartograph’s map embeddings use neural
networks trained on Wikipedia article content and user nav-
igation behavior. Using these embeddings, the system can
reveal connections between points that are unrelated in the
original data sets, but are related in meaning and therefore
embedded close together on the map. We describe the design
of the system and key challenges we encountered, and we
present findings from an exploratory user study.
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INTRODUCTION
For hundreds of years, humans have leveraged thematic car-
tography as a powerful means to quickly and effectively com-
municate complex geographic distributions [38]. Thematic
cartography helps us understand and explore multifaceted
geospatial processes ranging from election results [2, 5] to
climate change [4] to sports broadcast availability [1]. As
the quantity and diversity of spatial data increases, thematic
maps - often of the interactive variety - now frequently appear
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Figure 1: An overview of the Cartograph system webpage. A user
can select a map using the title bar at the top and search for a concept
using the box in the upper left. In this map, colors represent semantic
topics.

in news articles, blog posts, educational applications, and in
many other contexts.

One reason thematic cartography has proven so broadly use-
ful is that it offers several widely-established communicative
benefits [28, 38]. Most notably, thematic cartography has
been shown to be highly effective at simultaneously (1) com-
municating specific values for individual spatial entities (e.g.
the vote share in a specific U.S. state), (2) communicating
regional patterns (e.g. the vote share in the “Great Plains"
of the U.S.), and (3) helping people build and reference their
mental maps (e.g. “I knew the Great Plains had higher church
attendance than other areas, so I guess it makes sense that it
voted more Republican"). These benefits are often best un-
derstood in contrast to other visualization approaches. For
example, imagine the challenge of assessing regional patterns
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Figure 2: A map of businesses visualizing sustainability corporate
sustainability ratings from low (red) to high (green).

or updating one’s mental map using only a ranked list of U.S.
county election results in contrast to using a thematic map.

Despite its many benefits, however, thematic cartography tra-
ditionally has one major limitation: it can only be used to
support exploration and understanding in datasets that have
explicit geographic references. In this paper, we seek to ad-
dress this limitation by introducing Cartograph,1 a system that
uses Wikipedia-based neural network embeddings to extend
the major benefits of thematic cartography to datasets that
are not geographic in nature. Specifically, Cartograph uses
a novel “base map” defined by low-dimension embeddings
of Wikipedia content and Wikipedia navigation behavior to
visualize a wide variety of user-defined datasets. This general-
izability emerges from applying recent embedding techniques
to the vast amounts of available Wikipedia data (and Wiki-
data [42]), which affords a universal frame of reference on
which datasets from many domains can be layered.

Cartograph’s approach to thematic cartography is illustrated
in Figures 1 and 2. Figure 1 shows the “base map” with-
out any thematic layer. Here, one can see that, through the
use of neural network embeddings, related entities have been
placed close together and less related entities are further apart.
For example, technology-related concepts such as “email”,
“YouTube” and “web browser” appear nearby each other in
the pink region to the “East”, while concepts about U.S. cul-
ture and politics (“Barack Obama”, “Chicago”, “NY Times”)
appear in the middle in green. As we will describe below,
the placement of related entities close to one another is an
essential precondition to the use of cartography that enables
regional exploration and understanding. Cartograph incorpo-

1http://cartograph.info

rates algorithms that produce maps that effectively maintain
these relationships.

Figure 2 shows how Cartograph can visualize a non-spatial
dataset, in this case business sustainability ratings from
CSRHub.2 Here, we utilize well-known cartographic tech-
niques like graduated symbol mapping and standards-based
variation in hue to indicate the domains in which companies
are sustainable and those in which they are not. Zooming into
the map shows several surprising and semantically-grounded
regional patterns. While large European energy companies,
banks and conglomerates in the southwest region such as
Credit Suisse and Royal Dutch Shell show high sustainabil-
ity ratings, similar U.S. corporations in the northeast region
(Berkshire Hathaway, ExxonMobile) generally do not.

However, Cartograph extends more than just the regional com-
municative benefits of thematic cartography. Cartograph is
interactive and supports (semantic) zoom, allowing people to
see patterns at various semantic/spatial scales. This interac-
tivity also supports details-on-demand through pop-ups that
show additional information about each entity, reinforcing
thematic cartography’s ability to communicate information
about specific entities. Similarly, because Cartograph uses
a persistent base map, users can correlate what they learn
about company sustainability with all the other datasets they
visualize on this reference system. In other words, through
its persistent, universal base map, Cartograph reinforces the
indexing and updating of a mental map.

Cartograph can be understood as a spatialization system, a
family of technologies that seek to represent large corpora
(usually text documents) in 2D or 3D spaces. While spa-
tialization systems often adapt techniques from cartography,
they have limitations that have prevented them from taking
advantage of several of the key benefits of cartography listed
above. Specifically, existing spatialization systems either (1)
cannot utilize a consistent base map, eliminating the mental
map benefits of thematic cartography [11, 25, 37] or (2) are
limited to a small family of non-geographic visualizations
[6, 19]. Through its Wikipedia embeddings-based approach,
Cartograph creates a persistent environment in which a large
variety of datasets can be visualized, addressing both of these
well-known limitations. Additionally, existing spatializations
systems face well-known scaling challenges [19]. Cartograph
addresses these challenges through its use of large-scale neural
network embedding algorithms and recent advances in web
mapping technologies. This enables Cartograph to offer users
fluid web interaction for datasets containing millions of points,
an order of magnitude larger than existing systems.

Cartograph requires two data characteristics that are common
in exploratory analyses. First, dataset records must be as-
sociable with Wikipedia. However, as we note later, NLP
techniques can be used to associate “tail concepts” that are
not notable enough for inclusion in Wikipedia with related
Wikipedia entities. For example, IUI researchers do not typi-
cally have Wikipedia articles about them. However, we could
use algorithms to identify Wikipedia concepts mentioned in

2https://www.csrhub.com/
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a researcher’s publications or homepage. Second, the data
layers must exhibit semantic alignment with Wikipedia. If
the patterns to be visualized (e.g. sustainability ratings) do not
correlate with Wikipedia’s semantic structure (e.g. the link and
text patterns among companies), Cartograph‘s approach will
be less effective. Exploratory tasks (the focus of Cartograph)
are likely to obey the alignment property because they seek to
augment “human understanding” to produce data insights, an
approach which explicitly leverages the relationship between
data and semantics [43].

Below, we describe work that motivated Cartograph, highlight-
ing the well-known limitations of existing systems that Car-
tograph directly addresses. Next, we overview the numerous
design choices that went into Cartograph and their motivation.
We then present several case studies to demonstrate a series of
use cases for Cartograph. We close the paper by presenting an
exploratory user study that provides insights into the strengths,
weaknesses, and usage patterns of the system.

Lastly, while we include screenshots of the system throughout
this paper, we encourage the reader to explore Cartograph
online to experience these interaction techniques firsthand.3

RELATED WORK
Our work builds upon prior research that also visualizes data
using cartographic metaphors created by embedding higher-
dimensional data into a two or three dimensional map.

The goal of data visualization is to create a mapping from data
to visuals that is insightful, communicates necessary infor-
mation, and is aesthetically pleasing. This mapping process
is sometimes called a “digital visual metaphor” for its simi-
larities to linguistic metaphors, which map from one domain
of information onto another [12]. Spatialization is a specific
form of digital visual metaphor that maps non-spatial data
onto cartographic maps [11, 25].

Cartographic maps make use of Tobler’s First Law of Geog-
raphy, which states that “Everything is related to everything
else, but near things are more related than distant things” [39].
This distance-similarity relationship is one of the founding
principles of geographic analysis [36], and it has been shown
to hold for spatializations representing non-spatial data as dots
placed in a 2D or 3D space [14, 31]. In thematic cartogra-
phy, the distance-similarity metaphor is critical to supporting
one of the three key benefits of thematic cartography listed
above: regional analysis. If similar places were not related
in some way — e.g. if "western Europe" or "the (American)
South" did not share characteristics that bind it as a region —
regional analysis would be futile. Ensuring distance-similarity
is thus critical to any application of thematic cartography in a
non-geographic domain.

The most prominent work in this area, like ours, recognizes
the valuable role this distance-similarity relationship plays
in sense-making and data analysis. This can be traced back
to early efforts to display search results of document collec-
tions [8, 9, 23] or the world wide web [34] by extracting

3http://cartograph.info

semantic similarity information and using dimensional reduc-
tion techniques such as multi-dimensional scaling (MDS),
principal component analysis (PCA), or self-organizing maps
(SOM) to place them in a 2D space. Our visualization system
builds on these systems and others that integrate additional
spatial metaphors such as: (1) network links between data
points representing roads, (2) regions representing countries,
and (3) other geographic boundaries such as contours or lakes
(e.g. Gronemann et al. [18]).

Of particular note is the GMap system [17, 21], which presents
an algorithm to produce cartographic maps from graphs using
clusters as country regions. Although GMap is based on graph
data, while our starting point is a set of vectors that are embed-
ded as 2D points, the concepts are very similar. Like GMap,
Cartograph embeds and clusters the dataset and then draws
country borders based on those clusters. However, our border-
generation algorithm has been refined to create more realistic
internal and external boundaries, which enhances the map
metaphor and makes it easier for novice users to understand
and navigate.

A few spatialization systems provide inspiration for integrating
additional data beyond similarity into the visualization. In this
style, Gansner et al. [16] show how recommendations can
be displayed using a heatmap overlayed on a cartographic
visualization of movies and TV shows. Additional features
such as the amount of time spent watching a movie are charted
using label color and font size. Cartograph utilizes a similar
approach, augmenting the map with a thematic layer that
visualizes how the input data varies across geographic area.

Cartograph is also interactive. In addition to traditional query
based searching (e.g. Fluit et al. [15]), it enables users to
pan and zoom in to a focused detailed view or out to see the
larger context. This multi-scale zooming approach has two key
advantages: First, it allows Cartograph to run interactively in a
web browser with millions of data points (most spatializations
to date are limited to a few thousand points [24]). Second,
it promotes exploration, allowing for serendipitous discovery
and new insight generation. Cartograph “hints” at the points
visible on the next zoom levels, a technique that has been
successful in graph-based map visualizations [32].

As noted above, perhaps the most important distinction be-
tween Cartograph and previous work is that Cartograph works
with almost any data. While research suggests that traditional
spatialization visualizations promote discovery of similarities,
clusters, and outliers (important criteria for any exploratory
visualization) [10, 37, 40], traditional approaches require se-
mantic relatedness features to be present within the dataset
to be visualized. This limits the types of data that can be
visualized using these systems. Cartograph instead applies
semantic relatedness (SR) estimates extracted from Wikipedia
for any lexically expressed concepts in the data, enabling use
of spatialization techniques.

Along the same lines, Cartograph’s use of SR does bear simi-
larity to Hecht et al.’s Atlasify system [19] and related systems
like Frankenplace [6]. Atlasify uses SR data for “explicit spa-
tialization” to map data onto various spatial reference systems,
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including a periodic table, a US map, and a map of Congress.
These maps serve a different purpose from Cartograph. Rather
than using the data to generate entirely new spatial reference
systems of an information space, Atlasify overlays data on pre-
existing spatial reference systems. While this has the benefit of
leveraging existing mental maps of these reference systems, it
significantly limits the types of visualizations systems like At-
lasify can support. Indeed, Hecht et al. write that the Atlasify
approach could be extended to arbitrary domains through an
approach like Cartograph.

DESIGN OF CARTOGRAPH
This section describes the Cartograph system and the way in
which it creates its map. The section that follows relies on two
definitions: we use the term domain concept to refer to the
external data points that are mapped, and Wikipedia article to
refer to structured article content within Wikipedia.

Overview of System
Cartograph combines a four stage offline batch data pipeline
with an online map server. We summarize the stages below
and describe each stage in detail in the sections that follow.

1. Concept definition: Domain concepts broadly define the
inputs to the Cartograph system. At a minimum, Cartograph
requires the names of the domain concepts that should be
mapped (e.g. “IBM”, “Abraham Lincoln” ). Cartograph as-
sociates each domain concept to Wikipedia and mines other
key attributes such as popularity estimates and semantic
vectors from Wikipedia itself.

2. X,Y embedding: Concept embedding produces (x,y) co-
ordinates for each named concept. We note the distinction
between the high-dimensional vector space used by Carto-
graph for semantic interpretation and the two-dimensional
x, y coordinate space used for visualization. The high-
dimensional space (typically 100 to 600 dimensional dense
vectors [22]) supports semantic needs, such as neighbor
extraction and clustering. The two-dimensional x-y space
provides latitude and longitude for the spatial visualization.

3. Country formation. Next, “countries” are formed by clus-
tering points in the high-dimensional space. Areas in the
coordinate space associated with the same cluster form a
portion of that cluster’s country. Borders are then generated
around each country and topological contours are created.
These visual elements serve as landmarks that enable users
to quickly identify meaningful semantic structures in the
map.

4. Domain-specific data layers. During this step, Cartograph
produces thematic cartography for any domain-specific data
layer using GIS techniques. As with the definition of the
concept space, domain specific metrics need only include
concept names and quantitative metrics (for example, corpo-
ration names and sustainability indicators). GIS approaches
such as choropleth maps, dot density visualizations, and
heat maps can be used to visualize this data.

5. Map Server. Cartograph visualizes the concept data as a
zoomable web-based map. It combines vector-based and

raster-based approaches along with hardware-accelerated
browser technologies to deliver a fluid online map of the
data. By leveraging NLP algorithms trained on Wikipedia,
Cartograph also supports natural language search, even for
content not specified in the source concept space.

Stage 1: Concept Definition
The domain concept definition stage produces the raw inputs
for the Cartograph system. Throughout the concept definition
stage, Cartograph uses the WikiBrain system [35] to extract
information from Wikipedia including textual content, article
pagerank, page views, and content-based vector embeddings.

Concept identification: As an external input, Cartograph
must know the domain concepts it should map and the relation-
ship between those domain concepts and Wikipedia articles.
The domain of concepts can be represented using Wikipedia ar-
ticle identifiers (titles or page ids), free text names and phrases
(e.g. “PC”, “Mac”, “Linux”, “notebook”, “tablet”), or a query
that can be run against Wikipedia (the articles broadly within
the category “Movies”).

The relationship between domain concepts and Wikipedia arti-
cles is most commonly a one-to-one relationship (phrase “PC”
! article “Personal Computer”). However, more expressive
relationships are possible. For example, unstructured textual
phrases can be modeled directly, enabling maps to visualize
the approximately 60 million words that appear with regularity
in any language edition of Wikipedia. Cartograph uses stan-
dard NLP techniques such as named-entity disambiguation to
algorithmically map domain concepts to phrases. Additionally,
some domain concepts may not appear in Wikipedia explicitly
at all and must be modeled as a “bag of articles.” In these
cases, Cartograph can apply Wikification algorithms [33] that
take as input unstructured text describing domain concepts
and produce as output mentions of Wikipedia articles.

Wikipedia articles (and therefore Cartograph concepts) are
designed to be unambiguous. For example, the term “beetle”
might be represented by an articles about the insect, the Volk-
swagen car, and 19 other meanings of beetle. As mentioned
above, Cartograph uses algorithms to create these associative
mappings. In the film and corporation case studies in this paper
we use named-entity entity detection to define this mapping.
The case studies of Wikipedia articles require no additional
mapping.

While we refer to the structured Wikipedia data as “Wikipedia
articles” we note that Cartograph internally uses language-
independent representations of articles from the Wikidata
project [42], a human-editable database of facts about
Wikipedia articles. As we mention later, this enables Carto-
graph to draw upon both unstructured text related to Wikipedia
articles, as well as structured ontologies and attributes related
to those entities that are mapped.

Concept prominence: Spatial maps with large datasets must
decide which landmarks to show at a particular scale, and how
those landmarks should be sized. While geographic maps rely
on features such as population to do so, Cartograph extracts
information about each concept’s prominence from Wikipedia.
We experimented with a variety of features related to concept
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(a) Content-based movie embedding (b) Navigation-based movie embedding

Figure 3: Embedding for movies surrounding “2001: A Space Odyssey” using vectors mined from Wikipedia content (left), and user navigation
logs (right). Notice that the navigation-based vectors (right) are surrounded by space-oriented movies such as “Lost in Space” and “Event
Horizon” while the content-based neighborhood (left) appears more scattered thematically.

prominence. The two most effective features we explored were
the Pagerank of articles as measured using the Wikipedia link
graph [7], and the number of times each page was viewed.4

The Pagerank of articles tended to favor highly interlinked
concepts such as “United States”, “1997”, and “International
Standard Book Number.” While the generality of these con-
cepts was appealing, the metric seemed to place too much
importance on the number of pages that link to a concept.
Pageviews, on the other hand, favored popular concepts that
trended during the period in which pageviews are counted,
such as movies (“Star Wars - The Force Awakens”), politi-
cians (“Donald Trump”), and athletes (“Kobe Bryant.”) To
mitigate the volatile distribution of page views, we selected the
median views for each page from a sample of 100 hours over
a one-year period (the median was far more robust than the
mean to spikes in interest). We additionally log-transformed
the page views to normalize the long-tailed distribution of
interest in Wikipedia articles.

Once we computed both page rank and page views, we found
that formula below effectively balanced between concept gen-
erality and viewer interest, where P(a) calculates a promi-
nence score for article a.

P(a) = pageRank(a)⇤ log(median(pageviews(a)))

We chose to multiply the two terms described above before we
found they had similar importance and variability. The most
prominent concepts using this formulation included countries
(“United States”, “United Kingdom,” and many others) promi-
nent figures (“Barack Obama”), internet companies (“Google”,

4Pageview statistics for Wikipedia are publicly available from
https://dumps.wikimedia.org/other/pagecounts-raw/.

“Facebook”, “YouTube”), and other similarly broad and no-
table concepts.

Semantic vectors: Cartograph uses vectors representing each
concept to reason about relationships. We experimented with
two types of vectors learned from Wikipedia, both based on
the Word2Vec algorithm of Mikolov et al. [30], which mines
co-occurrence patterns in words within sentences.

The first vector embedding approach analyzed the content
within Wikipedia pages. To generate these 200-dimensional
content-based vectors we applied the Word2Vec algorithm
to the entire Wikipedia corpus, with two enhancements to
strengthen the vector representations of articles. First, we
incorporated the doc2vec algorithm [13] to produce vectors
for every article. Second, we used wikification [33] to extract
each mention of an article within Wikipedia — whether or
not it was hyperlinked. This ensured that each article’s repre-
sentation captured not just the content within the article, but
also the context in which it was mentioned throughout the
encyclopedia.

The second vector embedding approach analyzed navigation
logs within Wikipedia developed by Wulczyn [44] to create
100-dimensional vectors. This model treats user web sessions
as sentences, with words corresponding to the articles that
were viewed in each session. Correspondingly, this approach
mines co-occurrence patterns in visits to article pages. Wul-
czyn’s vectors are trained using approximately 1.6 billion user
sessions containing 6.2 billion page views.

We also experimented with vectors that combine the content
and navigation approaches via concatenation, but our initial
experiments suggested they were not effective. As we mention
in our discussion, an open area for future research uses deep
learning approaches to combine these techniques.
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(a) Homogeneous thematic cluster areas (b) Heterogeneous thematic cluster areas

Figure 4: Two areas within the Cartograph map of Wikipedia articles showing homogeneous (left) and heterogeneous (right) clustering results.
Points are colored by their topical group. On the left points are generally colored similarly to their cluster. On the right points show greater
variation. The heterogeneous areas are relatively rare within Cartograph.

Figures 3a and 3b compares the navigation and content ap-
proaches for vector-creation in movies. A detailed description
of the embedding process is described in the next section; here
we evaluate the output embeddings resulting from the content-
based and navigation-based approaches. In general the output
embeddings coming from the two approaches seem similar in
quality. However, we noted that in the movie embedding (Fig-
ures 3a and 3b), the navigation-based embeddings appeared
noticeably superior to the content-based embeddings. While
our hypothesis requires more evaluation, our intuition is that
the humans largely perceive relationships between two compa-
nies based on information that is encoded in Wikipedia, such
as the company’s industry, its size, and its location. However
the relationship humans perceive between two movies is not;
a movie’s genre, actors, year, plot-line, etc. are not sufficient
to capture human semantic understanding of movies. As a
result, we use the navigation-based embeddings throughout
the remainder of this paper.

Stage 2: X,Y Embedding
Next, Cartograph embeds the domain concepts into the (x, y)
plane. The high-dimensional Word2Vec vectors served as the
starting point for these (x, y) embeddings. Our goals in the em-
bedding were two-fold: 1) to ensure that neighboring (related)
points in the high-dimensional space were also neighbors in
the low-dimensional space, and 2) to produce embeddings that
appeared “land-like”, with variations in density and shape.

We experimented with a variety of embedding algorithms and
found that the t-SNE algorithm, which is known to generally
produce high-quality embeddings [27], performed well. t-SNE
also seemed to yield “natural point formations”. At a high
level t-SNE embeddings exhibited a dense center region that
resembled continents with decreasing density at the edges of

the map that that resembled island nations (Figure 1). At a low
level t-SNE also exhibited localized variations in density that
approximated rural and urban areas (Figure 2).

We found that even the highly optimized t-SNE algorithm
described in [41] required 24 hours to produce an embed-
ding for 500,000 points. This stage was, by far, the most
time consuming stage in our data pipeline. Therefore, we
limited the running time by sampling 500,000 points for the
initial embedding. The remaining out-of-sample points were
placed by interpolating the locations of each point’s in-sample
neighbors. Given a point p, we found that p’s neighbors in
high-dimensional space often spanned vast regions of the (x,y)
space. Therefore, we only used points in p’s densest (x, y)
neighborhood during interpolation.

Stage 3: Country formation
Our country formation procedure roughly follows procedures
used by previous spatialization projects [18, 21]:

Clustering: We identify the main groups of semantic topics
within a domain concept space by using the kmeans++ al-
gorithm to cluster the high-dimensional vectors. While we
acknowledge that some domain areas may have an existing
category structure that can be used (e.g. movies have genres),
this is not always the case. Cartograph can incorporate exist-
ing categories, but this work focuses on inferring topics for
data where none is available.

Clusters in the high dimensional space correspond to surpris-
ingly homogeneous areas once embedded in (x,y) space, as
shown by the consistent coloring between dots and background
colors in the overall view of the Wikipedia map in Figure 1
and the Figure 4a. However,heterogeneous topical areas still
remain, as shown in Figure 4b. These areas often correspond
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to multi-faceted articles that intuitively lie at the intersection
of two topics. For example, the area on the right shows the bor-
der between a cluster related to the Holocaust (top, in green),
and War (below, in purple). Many articles in the area, such as
“Heinrich Himmler”, lie at the intersection of these two topics.

Water modeling: We add random “water points” throughout
the map, with more points appearing toward the edges of
the graph. These points help identify the regions that are
dominated by domain concepts versus those that have lower
point densities and more “open space.” The areas with open
space are turned into water regions in later processing stages.

Denoising: We identify areas in the low-dimensional x, y
space that are dominated by a single cluster or water. This is
achieved using signal-processing techniques from [20]. We
temporarily remove outliers that are not members of the area’s
primary cluster for this phase of processing.

Country borders: We construct borders using a Delaunay
triangulation procedure with noising, following the procedure
described in [21].

Topological contours: Cartograph produces topological con-
tours for each country. We experimented with both density-
based and centrality-based contours. Density-based contours
are commonly used for relief maps in spatialization systems,
with higher-density areas associated with higher contours.
Centrality-based contours reflect the the similarity between
each point’s vector and the centroid for the country as a whole.
We found that the information shown by density contours was
already conveyed by the points visualized by Cartograph. Cen-
trality contours, on the other hand, highlighted the areas that
were most “representative” of each country.

Stage 4: Domain-specific Data Visualization
Once Cartograph has produced the map features, GIS data
visualization techniques can be used to show the relationship
between semantic space and any “domain-specific” dataset.
For example, in the case studies that follow, we show graphs of
Wikipedia article quality ratings and sustainability ratings for
companies. GIS approaches such as choropleth maps, dot den-
sity visualizations, and heat maps can be used to visualize this
data. We also note that the interactive, zoomable nature of the
map lends itself well to dot-density visualizations. These vi-
sualizations allow one to identify high-level patterns and then
zoom in to understand the individual data points contributing
to those patterns.

We note that it is not required that the visualization dataset
“cover” every domain-specific concept; some domain specific
concepts can have missing values, as shown in our case studies.
Including missing domain concepts allows users to extrapo-
late values for a point without data based on patterns in the
semantic region.

Stage 5: Map Server
We implemented a custom web-based framework to serve
maps that leverages recent advances in map rendering tech-
nologies. On the browser side, we used the Tangram javascript

Figure 5: A zoomed in version of the Wikipedia map focused on
jazz music.

open source framework5 to render maps using WebGL,6 a
hardware accelerated rendering engine supported by 92% of
browsers as of October 2016.7. We implemented a custom
map server that serves raster layers for background topology
and points, and vector layers for foreground points. To speed
up spatial queries, the map server loads data into memory,
uses optimized spatial indices, and precomputes and caches
both vector and raster layers. While this approach may not be
practical for a site that serves block-level imagery of the entire
earth, the one-time caching of five million data points only
took a few minutes on the Cartograph server. As far as we
know, Cartograph is the first spatialization system to make use
of the combination of vector, raster, and WebGL technologies
that has been effectively used by products such as Mapbox,
Bing Maps, and Google Maps.

CASE STUDIES
In this section we present case studies of Cartograph maps for
three sets of domain concepts.

Map of Wikipedia
The map of all of Wikipedia serves as a test case for a large
dataset. In this case, the domain of articles is the approxi-
mately 5 million concepts in Wikipedia, limited to the 1.4
million articles that have sufficient pageviews to warrant vec-
tors in the navigation data set. Figure 1 shows the overview of
the basic view of the map, with countries colored according
to their topical clusters. Sports broadly appear in contiguous
regions at the edges of the graph. American football, baseball,
and basketball appear in the teal region on the east edge of
the map, while soccer appears in red in the bottom. We found
these groupings to robustly appear across repeated randomized
map recreations. They also always appeared on the outskirts
of the map. This suggests that a sport such as baseball exhibits
a high degree of local similarity in its articles, but fewer “long
5https://mapzen.com/blog/tangram-a-mapping-library/
6https://www.khronos.org/registry/webgl/specs/1.0/
7http://webglstats.com/
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(a) The Wikipedia map of gender focus (b) Area of the Wikipedia map of gender focus related to feminism and sexuality

Figure 6: The Wikipedia map of gender focus. Blue and red dots correspond to articles that focus on men and women respectively.

distance” similarities to other clusters. Across map iterations,
we also found that consistent topical groups appeared for tech-
nology (in fuchsia, to the east), movies (in pink, to the north),
music (purple, to the north east), and Bollywood (in orange, to
the southeast). Figure 5 provides a focused view of the region
in the map related to jazz music. Surprising local relationships
emerge, with bebop music (John Coltrane, Miles Davis, Th-
elonious Monk) appearing towards the top, big band music
and vocal music appearing in the lower right (Duke Ellington,
Count Basie), and more contemporary jazz fusion appearing
in the lower left (Return to Forever, Chick Corea).

Figures 6a and 6b show a domain-specific thematic map of
Wikipedia, with points colored by the gender focus of the arti-
cle. Blue articles refer primarily to women, red articles refer
primarily to men, and purple articles are more balanced. To
collect the gender focus dataset, we used the Wikidata project
to identify articles about men and women, and connected peo-
ple to articles using the Wikipedia link graph. The overview
of the map in Figure 6a shows a striking focus on men (blue)
throughout Wikipedia. However, some areas of red emerge.
Figure 6b focuses on one such area, related to sexuality and
feminism. Other areas with a strong female focus include
modeling and womens’ sports. Areas related to entertainment
(musicians, actors, and television personalities) and Greek
mythology display a balance of focus on men and women. We
return to this map in the pilot study described later.

Map of Films
The second case study visualizes the map of films. Since
the Wikidata attribute “film” was consistently used to de-
scribe movies, this map includes all Wikipedia articles that are
marked as film and have a navigation-based vector, represent-
ing 72,229 movies. Figure 7a shows the basic thematic map
with cities colored by cluster. Bollywood movies appear in the
southwest, colored red. Films connected to Asian culture, in-

cluding anime and martial arts films appear in the southeast in
orange. Independent, foreign and art films (“Bicycle Thieves”,
“Cinema Paradiso”) appear in pink in the northeast, and older
critically acclaimed movies (“classics”) appear in dark purple
in the north (“Dr. Strangelove”, “Easy Rider”). The middle of
the map exhibits more thematic overlap, but yellow is broadly
action and comedy (“Ghostbusters”, “Rocky”, “Platoon”).

Figure 7b shows a domain-specific movie layer that visualizes
the “gender” of each movie. Movies of more interest to men
and women are blue and red respectively. This data was col-
lected from the MovieLens recommender system. Following
the procedure of [26] we used the number of times each movie
was rated by men and women to assign a “gender score” to
each movie, and included all movies that had been rated by
at least 20 users with known gender (MovieLens does not
require users to specify their gender). While many areas in the
top-right image show balanced interest from men and women,
several homogenous areas emerge. In particular, the south of
the map, showing action movies such as “Deadpool”, “Bat-
man v Superman” and “Furious 7” appears predominantly of
interest to men. The diagonal red patch in the southwest of the
map, shown at a high zoom in Figure 7c features many movies
generally referred to as “chick flicks”, such as “Sleepless in
Seattle” and “Pretty in Pink.”

EVALUATIVE FEEDBACK FROM USERS
To better understand how the Cartograph system would work
in practice, we deployed a version using the map of Wikipedia
articles colored by gender focus shown in Figure 6a and
solicited user feedback from members of several groups of
Wikipedia editors who contribute to projects related to gender.
In this exploratory study, we were less interested in algorith-
mic performance or user performance with time and error
metrics. Instead, our goal was to learn how domain experts
interpret the cartographic embedding, how the gender focus
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(a) Map of movies colored by topical cluster (b) Map of movies colored by gender interest (c) Area of gender map focused on movies of interest
to women

Figure 7: The Cartograph map of films. The first image shows topical clusters, while the second two images show movies that exhibit more
interest from men (blue) and women (red).

information overlaid on top of the map would help them ana-
lyze Wikipedia data, and what we can learn about the design
of spatialization tools to support analytical tasks.

Participants
Participants were recruited through postings to the discussion
pages for three WikiProjects related to gender: the “Gender-
Gap task force”, “Women and Red”, and “Feminism” . Each of
these task forces contribute to Wikipedia in ways that address
systemic gender bias in Wikipedia articles. Six participants
(three female) completed the study successfully. A seventh
user attempted the study but did not compete it successfully.
He did not provide any feedback on the tasks and notified the
authors that he had not realized the system could zoom. His
results were removed before analysis. Although six is too low
a number of participants to draw any statistical conclusions,
from users’ qualitative feedback we are able to identify com-
mon patterns in usage. Participants’ ages range between 24–53
(median: 40 years). All of the participants edit Wikipedia arti-
cles at least yearly, with three out of the six editing monthly.

Methodology and Tasks
Each of the participants performed three tasks, structured to
model specific exploratory visualization tasks:

1. Locate – Identify Wikipedia articles with the highest
women’s gender focus.

2. Identify Distribution, Associate, and Correlate – Describe
the common characteristics of articles with a high women’s
gender focus and how they are related to other articles
nearby in the map that have a higher male focus.

3. Browsing – Explore the map while noting observations.

The tasks were presented in a panel on the right side of the map
visualization that contained a text box for participants to enter
their feedback. The order of the three tasks was randomized
to avoid any learning effects. Prior to starting the first task,
participants were given an interactive tutorial of the system us-
ing IntroJS [3] that walked them step-by-step through the user

interface. After the third trial was complete participants an-
swered a short survey consisting of demographic information
and the Likert scale questions shown in Table 1.

Analytic Strategies Using Cartograph
The results indicate that Cartograph enables users to identify
overall patterns within the data and dive deeper to identify
more complex relationships. One participant mentioned that
her “first reaction ... is ‘wow that’s a small number of red dots’
- but beyond that, it’s a UNIFORMLY[sic] small number. I’d
expect a higher proportion of women and women-focused arti-
cles in areas traditionally considered more ‘feminised’. And
it may well be that there are but they don’t make it to the top
view (and are hard to find) because those areas are themselves
underrepresented and underlinked.” By looking more closely
at individual articles, several participants found that the arti-
cles with a high female gender focus are about actual women
who existed as opposed to topic and idea articles which are
male dominated. This finding may serve the WikiProjects as
they select articles to focus on.

In general, the relationships between article regions represent-
ing countries were clear. One participant identified that “the
links surrounding articles on women, or articles on places
about women, seem to be education-related”. Another said
“Janet Jackson and Beyoncé [articles] seem to be clustered
with music related nodes. Elizabeth II is clustered with other
world leaders and European countries. Diacritic seems to be
clustered with northern European countries and languages”.

To identify patterns and relationships in the map participants
used one of two general strategies: (1) They zoomed in to a
high level of detail and then panned around the map, or (2)
They zoomed in on specific areas, explored, and then zoomed
back out to get additional context before zooming in again on
other areas of the map. This can be seen in the logging data as
participants completed the task.
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Table 1: Mean survey question responses on a seven point Likert
Scale (higher values indicate positive agreement).

How quickly could you achieve your tasks? 4.8
The tool required a lot of explanation to use. 3.5
It was unclear why specific articles were grouped together. 4.6
I learned new information about the data. 5.6
The tool was easy to use. 5.8
The tool was fun to use. 6
How successful were you in accomplishing what you were
asked to do?

5.5

Table 2: Results for exploring gender focus in Wikipedia articles.

Participant Time
Spent

Pan
Operations

Number of
Searches

Article
Clicks

Participant 0 6:22 64 0 26
Participant 1 13.23 0 0 1
Participant 2 6:00 31 6 3
Participant 3 14.26 87 1 7
Participant 4 37:24:23 116 0 5
Participant 5 12:30 80 1 54

Feedback on Specific Features
Table 2 shows the number of times participants panned from
one area of the map to another, the number of searches they
performed, and the number of articles that they clicked on to
receive further information. It also shows the total time that
the visualization was open in participants’ browsers. Note that
participants 4 took a long break in the middle of completing
the tasks before returning to finish.

Participants primarily panned and zoomed around the map
without frequent use of the search feature. This is consistent
with the exploratory nature of the tasks rather than more fo-
cused searching. User feedback also shows that an increased
ability to see more information about article relationships is
needed. Cartograph enables users to find new relationships,
but it does not directly explain what those relationships are
beyond a high-level idea of similarity. All of the participants
spent time clicking on articles to read descriptions in an at-
tempt to gain more insight into their similarity.

We are enthusiastic about the potential Cartograph has for
visualizing data that does not originally contain any spatial
or semantic relatedness components, perhaps through addi-
tional data layers. One participant acknowledged how an
article’s gender focus could serve as one layer, while other
demographic statistics could be represented at the same time
on other layers. These data overlays could include additional
visual glyphs or heatmaps to visualize more data that may help
with analysis.

CONCLUSION
This paper introduces Cartograph, a system that unlocks the-
matic cartography for diverse data. Cartograph supports nearly
universal spatialization, transforming a dataset with no existing
semantic information - for example, business names and sus-
tainability ratings - into an interactive thematic map grounded
in semantic information mined from Wikipedia. Its use of
recent advances in mapping technology affords multi-scale
analyses that support datasets containing millions of points
in a web browser, an order of magnitude larger than previous
efforts.

While our exploratory study of the initial Cartograph system
yielded generally positive feedback, it also suggested a variety
of areas for future research.

Several users stated that they were confused by the relation-
ship between neighboring cities. This shortcoming might be
addressed in a variety of different ways. First, the 2D embed-
dings could be directly improved. This might be accomplished
by creating a hybrid vector representation that combines the
content-based and navigation-based vectors using a deep learn-
ing. Second, the embeddings and the clustering could be
jointly constructed in a way that encourages more homoge-
neous clusters. This might increase the effectiveness of the
"country" metaphor and help delineate boundaries neighboring
between points that are in between semantic clusters. Third,
and perhaps most promisingly, Cartograph could be enhanced
so that it goes beyond displaying semantic neighbors to ex-
plaining semantic neighbors. With this goal in mind, we have
been experimenting with adding labeled "roads" to the map
to describe relationships between points. To understand these
questions, we plan to use Cartograph to conduct larger-scale
studies of more varied datasets and tasks. In particular, we
would like to understand whether answers to the question
above vary depending on a user’s task.

Cartograph, as currently designed, visualizes a static set of
concepts. It creates a single initial map that does not reflect lon-
gitudinal changes in a particular domain’s information space.
Ideally, Cartograph would use incremental forms of clustering
and embedding algorithms that start with an initial map and
incrementally adapt as the information changes. Alternately
Cartograph could draw inspiration from recent research that
has experimented with alternative interaction patterns, includ-
ing visualizing dynamic data [29] and surfacing personalized
recommendations [16]. Cartograph’s interactive and scalable
design makes it a good fit for experimenting with interactions
including these and others.

Cartograph could be enhanced to provide services to end users
with no programming skills. While Cartograph’s source code
is publicly available8, mapping new datasets requires com-
mand line expertise that limits the potential audience for our
approach. In the future, we hope to extend the system with a
web-based map-creator interface and API so that end users,
third party websites and data analysis tools can incorporate
the research advances in this paper into their own work.
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