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Figure 1: 3D user interfaces for selecting geometry in a region-of-interest: (Left) Yea Big, Yea High Selection[Jackson et al.
2018]; (Center) Two-Handed Volume Cube [Ulinski et al. 2007]; (Right) Slice-n-Swipe [Bacim et al. 2014]
.
ABSTRACT
Selecting 3D regions-of-interest (ROI) in surface geometry is essen-
tial for 3D modeling, but few 3D user interfaces using fully manual
input for ROI selection exist. Furthermore, their relative perfor-
mance is not well studied. We present an evaluation comparing
three ROI techniques: Volume Cube [Ulinski et al. 2007], Slice-n-
Swipe [Bacim et al. 2014], and Yea Big Yea High Selection [Jackson
et al. 2018]. Results show that Yea Big Yea High is best for tasks re-
quiring high accuracy and speed, but modifications may be needed
for use in dense geometry or with non-convex ROI.
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1 INTRODUCTION
Driven by the now wide-spread availability of consumer-grade vir-
tual reality (VR) displays, more and more applications that tradition-
ally would have been performed on a desktop display are migrating
to VR. For example, artists are increasingly using VR for 3D mod-
eling and other creative pursuits (e.g. with Google Tiltbrush [Inc.
2017], Lift-off [Jackson and Keefe 2016], Cave Painting [Keefe et al.
2001]). In this domain, selection is an essential interaction task for
users to be able to quickly and accurately indicate the portions of a
3D model that are the focus for future modeling interactions.

Traditional 3D user interfaces (3DUI) for selecting single or mul-
tiple discrete objects, such as the raycast metaphor [Mine 1995] or
a virtual hand technique [Mine et al. 1997; Poupyrev et al. 1996], be-
come tedious when selecting hundreds or thousands of triangles in
a model. Instead, 3D user interfaces that select a region-of-interest
(ROI) must be used. To our knowledge, only four manually con-
trolled — as opposed to structure-aware, which are not generalizable
to every model — 3DUI interfaces for ROI selection exist: Tangible
Brush [Besançon et al. 2019], Slice-n-Swipe [Bacim et al. 2014],
Volume Cube [Ulinski et al. 2007], and Yea Big Yea High Selec-
tion [Jackson et al. 2018]. Furthermore, their relative advantages
and disadvantages are not yet well explored.

In this paper, we present a controlled study evaluating Slice-n-
Swipe, Volume Cube, and Yea Big Yea High — the three manual ROI
selection techniques that can be implemented using only readily
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available consumer-grade VR head-mounted displays and their
bundled controllers.

2 RELATEDWORK
Although many evaluations exist comparing selection techniques
for single objects (e.g. [Bowman et al. 2001; Grossman and Balakr-
ishnan 2006; Lubos et al. 2014]) and multiple objects [Lucas 2005],
evaluations comparing ROI selection techniques in a systematic
way are lacking. Predominately, evaluations of these techniques
only compare to one other baseline. For example, Yu et al. [Yu et al.
2012] compared CloudLasso to Cylinder Selection [Lucas 2005],
both representing structural-aware techniques based on a 2D lasso.
The most comprehensive study compares the three CAST tech-
niques [Yu et al. 2016] to CloudLasso [Yu et al. 2012] and Cylinder
Selection [Lucas 2005]. The techniques were evaluated based on
selection speed and the accuracy of the selected region. They found
that SpaceCAST was approximately three times as fast as Cylinder
Selection and approximately twice as fast as CloudLasso [Yu et al.
2016], while providing similar accuracy.

Besançon et al. [Besançon et al. 2019] present the only study
comparing a manual technique, Tangible Brush, to a structural-
aware lasso technique, SpaceCAST [Yu et al. 2016]. SpaceCAST was
faster to use, but surprisingly less accurate than Tangible Brush.

To our knowledge, no evaluation compares multiple ROI selec-
tion techniques for surface geometry based only on fully manual
input. In this paper, we propose to fill this gap through a controlled
experiment.

3 USER STUDY
3.1 ROI Selection Techniques
Below, we discuss specific implementation details for the three
studied selection techniques, and refer the reader to the original
papers for a more detailed description of the interface mechanics.

Yea Big, Yea High Selection. [Jackson et al. 2018], shown in Fig-
ure 1 Left, uses the metaphor of an infinite cutting plane attached to
each hand. At the press of a button, the region between the cutting
planes defines the ROI for the selection. The triangles in the selec-
tion mesh are then classified as inside or outside the ROI. Triangles
intersecting one of the cutting planes are subdivided, re-meshed,
and assigned to the appropriate classification. This process can be
repeated with the planes in different orientations to progressively
refine the volume.

Volume Cube. [Ulinski et al. 2007] uses the metaphor of a six-
sided box to define the selection ROI. Ulinski et al. presented three
different techniques for controlling the position and orientation
of the box. Based on their evaluations in the original paper and
follow up studies [Ulinski et al. 2009] that found the “Two-Corner"
control method to have the highest selection accuracy, we based
our implementation on the “Two-Corner" method. This method
attaches opposite corners of the box to the user’s hands (See Figure 1
center).

To make for a fairer comparison, we also modified the technique
to allow for progressive refinement of the ROI. After an initial
selection, subsequent selections operate on only the prior selection
region — functioning like a boolean intersection — allowing for
selections of arbitrarily shaped ROI beyond a box.

(M4.) (M5.) (M6.) (M7.)

(M1.) (M2.) (M3.)

Figure 2: Surface models used in the selection study. (M1.)–
(M6.) represent synthetic examples. (M7.) represents a more
realistic selection from a hemoglobin molecule.

Slice-n-Swipe. [Bacim et al. 2014] uses a chef’s knife metaphor.
Originally tracked using a Leap Motion [Ltd. 2019], a slicing move-
ment of a finger creates an infinite cutting plane. Subsequently,
a movement perpendicular to the cutting plane is registered as a
swipe. Geometry in the swipe direction is removed from the se-
lection. Repeated slice and swiping actions define and filter the
geometry to a ROI.

We adapt Slice-n-Swipe to use an HTC Vive controller. A sword
line projects one meter along the controller’s pointing direction.
Moving the controller more rapidly than a threshold (0.03m per
frame) indicates a slice plane. A movement roughly perpendicular
to the slice plane, while clicking the trigger on the controller held
in the dominant hand, creates a swipe.

3.2 Methodology
3.2.1 Participants. We recruited 19 right-handed, undergraduate
students. One was unable to complete the study due to technical
hardware issues, leaving 18 participants (5 male, 13 female) for
analysis. Ages ranged from 18–23 (M = 20.1, SD = 1.1). Seven
participants reported never using VR previously. Nine reported
using VR 1–5 times, and two reported more than 20 prior uses. 15
reported prior video game use, with four reporting often or regular
use.

3.2.2 Apparatus. The experiment was performed using an HTC
Vive head-mounted displaywith two standardHTCVive controllers.
A 4.4GHz PC running Windows with dual NVidia GTX1070 GPUs
drove the display in Unity3D. Participants were allowed to walk
in a 2.43m × 2.43m square area free of any obstacles with a virtual
floor calibrated to the physical floor.

3.2.3 Task and Procedures. The study used seven surface models
(Figure 2). Eachmodel contained a parent object (shown in grey) and
a subset selection target (shown in blue). Participants were asked to
select the blue target. Before the experiment, participants trained
with three additional models (similar in style to M1–M7), and they
needed to reach 80% precision and recall on each to advance. The
average training time was four minutes for Yea Big Yea High, and
six minutes for Slice-n-Swipe and Volume Cube.

3.2.4 Design and Analysis. The study followed a repeated-measures
design. The within-subjects independent variables were interac-
tion technique and model. The order of the techniques were fully
counter-balanced to avoid learning and order effects. The synthetic
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Table 1: Mean accuracy scores and completion times. Stan-
dard deviation shown in parentheses.

Model F1 MCC Completion Time

Slice-n-Swipe

1 M1: Cylinder/circle 0.94 (0.02) 0.94 (0.02) 74.7s (29.1)
2 M2: Cylinder/irregular 0.95 (0.03) 0.95 (0.03) 63s (31.2)
3 M3: Cylinder/square 0.95 (0.02) 0.95 (0.02) 46.1s (24.8)
4 M4: Plane/circle 0.96 (0.01) 0.95 (0.02) 65.3s (26.6)
5 M5: Plane/irregular 0.96 (0.02) 0.95 (0.02) 61.7s (28.9)
6 M6: Plane/square 0.95 (0.02) 0.94 (0.03) 50.5s (28.6)
7 M7: Molecule 0.88 (0.12) 0.88 (0.11) 101.2s (32.7)

Volume Cube

8 M1: Cylinder/circle 0.95 (0.03) 0.95 (0.03) 56.9s (35.8)
9 M2: Cylinder/irregular 0.96 (0.03) 0.96 (0.03) 61.5s (24.8)
10 M3: Cylinder/square 0.96 (0.02) 0.96 (0.02) 51.3s (29.9)
11 M4: Plane/circle 0.95 (0.03) 0.94 (0.04) 62s (36.3)
12 M5: Plane/irregular 0.96 (0.04) 0.94 (0.05) 105.1s (57.7)
13 M6: Plane/square 0.95 (0.05) 0.93 (0.06) 57.1s (34.5)
14 M7: Molecule 0.91 (0.07) 0.91 (0.06) 94.3s (61.1)

Yea Big Yea High

15 M1: Cylinder/circle 0.97 (0.01) 0.97 (0.01) 55.8s (25.4)
16 M2: Cylinder/irregular 0.97 (0.02) 0.97 (0.02) 44.8s (19.2)
17 M3: Cylinder/square 0.97 (0.01) 0.97 (0.01) 35.1s (15.8)
18 M4: Plane/circle 0.97 (0.01) 0.97 (0.01) 59.5s (24.6)
19 M5: Plane/irregular 0.98 (0.02) 0.98 (0.02) 61.6s (35.9)
20 M6: Plane/square 0.98 (0.01) 0.98 (0.01) 32s (21.5)
21 M7: Molecule 0.85 (0.21) 0.87 (0.18) 104s (55.6)

models (M1–M6) were presented in random order, while the real-
world molecule (M7) was presented last to each participant.

The dependent measures were selection completion time (mea-
sured in seconds) and accuracy. To support comparison with Yu
et al. [Yu et al. 2016] and Besançon et al. [Besançon et al. 2019],
we use two different metrics for accuracy. The first is the F1 score,
combining precision (P ) and recall (R) based on area of the selec-
tion. The second is the Matthew’s Correlation Coefficient, MCC.
In addition to the true positive (TP), false positive (FP), and false
negative (FN) selection areas, the MCC also takes into account true
negatives (TN) [Boughorbel et al. 2017].

F 1=2· P ·RP+R (1)
MCC= T P ·TN−FP ·FN√

(T P+FP )(T P+FN )(TN+FP )(TN+FN )
(2)

Workload was assessed for each interaction technique using
NASA’s Task Load Index (TLX) [nas 1988]. Perceived exertion was
indicated on the Borg CR10 [Borg 1998] scale as ameasure of fatigue.
This scale is commonly used for measuring exertion during physical
activity [Dawes et al. 2005].

Visualizations and numerical summaries (mean and standard de-
viation) were generated for each outcome by interaction technique
and model. The mean outcome differences between interaction
techniques were estimated using marginal linear models assuming
exchangeable correlation [Liang and Zeger 1986], one fit for each
dependent measures. These linear models were fit to the synthetic
and real surface models separately due the differences in complexity
and existence of outlying values for the real world geometry. This
statistical model accounts for different individual ability levels. For
each measure, the model included the interaction technique, the se-
lection target shape, surface type, and the number of previous trials
with that technique to account for learning. Variables that had no
significant effect, based on robust sandwich standard errors [Liang
and Zeger 1986], were not included in the final statistical model.

Volume Cube − Slice−N−Swipe

Volume Cube − Yea Big Yea High

Slice−N−Swipe − Yea Big Yea High

−30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30

Adjusted Mean Difference

Time Elapsed

Figure 3: Differences in mean completion time (sec) on syn-
thetic data and 95% confidence intervals estimated from a
marginal model adjusted for the surface and target shape.

Volume Cube − Slice−N−Swipe

Yea Big Yea High − Volume Cube 

Yea Big Yea High − Slice−N−Swipe 

−0.02 −0.01 0.00 0.01 0.02 0.03

Adjusted Mean Difference

F1 Measure

Figure 4: Differences in mean F1 accuracy on synthetic data
and 95% confidence intervals estimated from a marginal
model that adjusted for the surface shape and experience
with the interface.

The NASA TLX and Borg CR10 results were visually and numer-
ically summarized (mean and standard deviation) by interaction
technique. We visually explored the NASA TLX subscores by tech-
nique to better understand the workload using boxplots; the box
represents the values of middle 50% of the scores, the dark middle
line represents the median score, and the whiskers represent the
extreme non-outlying scores.

3.3 Results
3.3.1 Completion Time. Table 1 includes the mean completion
time among the 18 participants for each interaction technique and
model. Average completion time is longer for the molecule model
as compared to the synthetic scenarios (about 100s as compared
to 50-60s). Across the six synthetic models, average completion
times are 48s, 60s, and 65s for Yea Big Yea High, Slice-n-Swipe,
and Volume Cube, respectively. Figure 3 shows the model-adjusted
mean completion time differences between each pair of interaction
techniques with corresponding 95% confidence intervals. Comple-
tion time is significantly faster for Yea Big Yea High compared to
both Slice-n-Swipe and Volume Cube, but the other two techniques
are not significantly different in terms of time, keeping surface and
target shape fixed.

In terms of the surface model, within an interaction technique,
selecting an irregular shape was significantly faster with a cylindri-
cal surface as compared to a flat surface. For both types of surfaces,
square targets are significantly faster to select than circles and ir-
regular targets. Irregular targets are faster to select than circles on
cylinders but slower to select on flat surfaces.

3.3.2 Accuracy. The molecule model had lower accuracy measures,
on average (Table 1). Since F1 and MCC are highly correlated (r =
0.985), we present the technique comparison for F1 only. Figure
4 shows the model-adjusted mean F1 differences between each
pair of interaction techniques with corresponding 95% confidence
intervals. Selection with Yea Big Yea High is significantly more
accurate than Slice-n-Swipe and Volume Cube (F1 = 0.975 vs. 0.955,
on average), keeping surface and previous trials fixed.
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Table 2: Mean and standard deviation for NASA TLX and
Borg CR10.

Selection Technique NASA TLX Score Borg CR10

1 Yea Big Yea High 40.21 (14.95) 1.89 (1.24)
2 Slice-n-Swipe 47.72 (15.56) 2.21 (1.44)
3 Volume Cube 60.25 (16.51) 3.69 (2.28)

Perform Physical Temporal

Effort Frustration Mental

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

Yea Big Yea High

Slice−N−Swipe

Volume Cube

Yea Big Yea High

Slice−N−Swipe

Volume Cube

Score

Figure 5: Boxplots (box represents middle 50% of observa-
tions and middle line shows median value) of NASA TLX
subscores by interaction technique.

3.3.3 Workload and Perceived Exertion. NASA TLX total workload
scores are shown in Table 2. Boxplots showing the raw subscores
are presented in Figure 5. The data suggest that, on average, Yea Big
Yea High requires the lowest total workload (mean = 40.21), then
Slice-n-Swipe (mean = 47.72), followed by Volume Cube (mean =
60.25). The subscores generally follow this pattern, except Slice-n-
Swipe and Yea Big Yea High were rated much lower on the mental
and frustration scales and there are not clear differences in the
temporal scale for the three techniques. Yea Big Yea High also had
the lowest perceived exertion measured by the Borg CR10, followed
by Slice-n-Swipe. Volume Cube exhibited significantly higher mean
perceived exertion corresponding with “moderate" exercise.

3.3.4 Qualitative Preferences. 14 participants chose Yea Big Yea
High as their preferred technique and 4 chose Slice-n-Swipe. Partic-
ipants felt that Yea Big Yea High was the most accurate (14 votes, 3
for Slice-n-Swipe, and 1 for Volume Cube) and the most comfortable
(12 votes, 6 for Slice-n-Swipe).

4 DISCUSSION
4.1 Study Findings
The results show that Yea Big Yea High outperformed the other
two techniques for both completion time and accuracy. Volume
Cube and Slice-n-Swipe performed roughly equivalently. Volume
Cube was slightly more accurate and slower, but we do not have the
statistical power to detect this small effect with the small sample
size. Below, we report on the study’s findings in more detail.

Yea Big Yea High is best for high accuracy and speed. The lower
mean task completion time and higher accuracy for Yea Big Yea
High compared to Slice-n-Swipe could be explained in part by
the participants’ strategies. We observed 11 of the 18 participants
using Yea Big Yea High select opposite edges in parallel for the
square and circular targets, using fewer operations. In contrast
with Slice-n-Swipe, users roughly defined the ROI before refining
it with additional slices. Several participants increased accuracy by
pre-planning a slice action, slowly moving along the target edge
before speeding up to the activation threshold. Even with these

accommodations, participants would frequently undo the cut and
slice again until the cut plane matched their desired result.

Surprisingly, despite Slice-n-Swipe having slower completion
times, 12 participants perceived it as the fastest technique in a
post-experiment questionnaire (Yea Big Yea High had six votes, and
Volume Cube had zero). We believe this perceptual mismatch can be
explained by the game-like feel of the interface. A few participants
mentioned that Slice-n-Swipe was the most fun.

Yea Big Yea High’s increased accuracy might be explained by
the more limited degrees-of-freedom (DOF). It has 6DOF, but this
is split to 3DOF per hand, possibly making the selection easier
to control. We would expect similar results for Volume Cube, but
perhaps this was overwhelmed by the higher mental workload.

Increasing cutting planes leads to higher mental load. Volume
Cube had the most NASA TLX mental workload, followed by Yea
Big Yea High and then Slice-n-Swipe. This correlates to the in-
creased focus needed for multiple cutting planes. For Yea Big Yea
High, participants needed to maintain both hands wider than the
target area to keep it within the ROI. Volume Cube further increases
the mental requirements because users must focus on all six sides
of the box at once. Volume Cube also has the highest perception
of exertion on the Borg CR10 [Borg 1998]. Yea Big Yea High has
less perceived exertion than Slice-n-Swipe. Despite Slice-n-Swipe
allowing a user to rest their hands between slices, these results can
be explained by the inaccuracy of the slicing gesture sometimes re-
quiring multiple slices and the greater movement needed to activate
it.

Constrained cutting planes are best for dense models. We attribute
the slower completion times and less accuracy for the molecule
model (M7) to the increased complexity of the dense real-world
example, causing participants to spend more time exploring. Com-
pletion times also increased due to more physical navigation to
filter the selection along the depth axis in front and behind the tar-
get for Slice-n-Swipe and Yea Big Yea High. These depth selections
were not always optimal, and we observed several participants
end the M7 trial without noticing that parts of the molecule were
selected outside the target area, leading to lower accuracy. These
observations were most common for Yea Big Yea High and Slice-n-
Swipe, which use infinite cutting planes. For dense models, Volume
Cube may provide a more accurate and intuitive approach since it
automatically constrains the selection by the front and back planes
of the selection box. Further study is needed.

Performance for ROI selection may depend on visual feedback. A
virtual sword was used for visual feedback in the Slice-n-Swipe
chef’s knife metaphor. While this sword worked particularly well
when roughing out the ROI, it was less successful for making precise
slices. We observed users focusing on the end of the sword rather
than their hand. Occasionally this led to difficulty activating the
slice gesture which depended on hand movement. Instead users
would keep the position of their hand constant but just rotate the
sword to indicate a slice. Future Slice-n-Swipe interfaces should
consider different visual feedback or enable the slice gesture based
on the motion at the end of the sword rather than the hand.

Users favor selections with more false positives than false negatives.
The majority of participants preferred selecting a ROI that was
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larger than the target area rather than excluding part of it. Undo
operations were performed most often when users selected a ROI
edge inside the target region. The design of future ROI selection
techniques should take this user preference into account.

5 LIMITATIONS AND CONCLUSION
We have presented a controlled evaluation comparing three manual
ROI selection techniques. Yea Big Yea High Selection was found to
be the fastest and most accurate technique, although some partici-
pants preferred Slice-n-Swipe, which is able to select larger than
body-scale ROI. One limitation of all the studied techniques is that
the ROI is limited to convex shapes. In future work, we plan to
develop techniques applicable to non-convex ROI. In conclusion,
our findings indicate that future designers of manual ROI selection
techniques should: (1) consider limiting the user’s focus to one or
two regions at once, (2) provide appropriate visual feedback to im-
prove control, and (3) consider alternative approaches to select the
ROI’s bounds along the depth axis, particularly for dense models.
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